Skip to main content

Disabling of Nanoparticle Effects at Increased Temperature in Nanocomposite Solders

Abstract

The use of nanoparticles to control grain size and mechanical properties of solder alloys at high homologous temperature is explored. It is found that silica nanoparticles in the 100 nm range coated with 2 nm to 3 nm of gold can be dispersed within solders during the normal reflow soldering process, and that these particles are effective in hardening the solder and restricting dynamic grain growth during compression testing at low homologous temperature. As the homologous temperature increases towards 0.75, the effects of the nanoparticles on both mechanical properties and dynamical grain growth reduce, and by homologous temperatures of 0.86 the effects have completely disappeared. This behavior is explained by introducing the concept of an effective volume fraction of pinning nanoparticles, and the practical implications for using nanoparticles to control solder properties via Zener pinning at high homologous temperatures are discussed.

References

  1. I.E. Anderson, J. Mater. Sci. Mater. Electron. 18, 55 (2007).

    Article  CAS  Google Scholar 

  2. J.J. Sundelin, S.T. Nurmi, T.K. Lepisto, and E.O. Ristolainen, J. Electron. Mater. 35, 1600 (2006).

    Article  CAS  Google Scholar 

  3. H. Hao, J. Tian, Y.W. Shi, Y.P. Lei, and Z.D. Xia, J. Electron. Mater. 36, 766 (2007).

    Article  CAS  Google Scholar 

  4. S.W. Chen and C.A. Chang, J. Electron. Mater. 33, 1071 (2004).

    Article  CAS  Google Scholar 

  5. C.W. Hwang, K.S. Kim, and K. Suganuma, J. Electron. Mater. 32, 1249 (2003).

    Article  CAS  Google Scholar 

  6. H. Mavoori and S. Jin, J. Electron. Mater. 27, 1216 (1998).

    Article  CAS  Google Scholar 

  7. K. Song and M. Aindow, Mater. Sci. Eng. A Struct. 479, 365 (2008).

    Article  Google Scholar 

  8. K.N. Chang, W.M. Feng, and L.Q. Chen, Acta Mater. 57, 5229 (2009).

    Article  CAS  Google Scholar 

  9. C.S. Smith, Trans. Am. Inst. Min. Metall. Eng. 175, 15 (1948).

    Google Scholar 

  10. Y.X. Liu and B.R. Patterson, Acta Mater. 44, 4327 (1996).

    Article  CAS  Google Scholar 

  11. P.M. Hazzledine and R.D.J. Oldershaw, Philos. Mag. A 61, 579 (1990).

    Article  Google Scholar 

  12. Y.W. Shi, J.P. Liu, Z.D. Xia, Y.P. Lei, F. Guo, and X.Y. Li, J. Mater. Sci. Mater. Electron. 19, 349 (2008).

    Article  CAS  Google Scholar 

  13. R. Ashayer, S.H. Mannan, and S. Sajjadi, Colloid Surf. A 329, 134 (2008).

    Article  CAS  Google Scholar 

  14. R. Ashayer, A. Cobley, O. Mokhtari, S.H. Mannan, S. Sajjadi, and T. Mason, ESTC 2008: 2nd Electronics System-Integration Technology Conference, Vols 1 and 2, Proceedings (2008), p. 929.

  15. W. Stober, A. Fink, and E. Bohn, J. Colloid Interf. Sci. 26, 62 (1968).

    Article  Google Scholar 

  16. T. Pham, J.B. Jackson, N.J. Halas, and T.R. Lee, Langmuir 18, 4915 (2002).

    Article  CAS  Google Scholar 

  17. D.G. Duff, A. Baiker, and P.P. Edwards, Langmuir 9, 2301 (1993).

    Article  CAS  Google Scholar 

  18. O.M. Amirmajdi, R. Ashyer-Soltani, M.P. Clode, S.H. Mannan, Y.Q. Wang, E. Cabruja, and G. Pellegrini, IEEE Trans. Electron. Packag. Manuf. 32, 265 (2009).

    Article  CAS  Google Scholar 

  19. P. Bate, Acta Mater. 49, 1453 (2001).

    Article  CAS  Google Scholar 

  20. M. Miodownik, J.W. Martin, and A. Cerezo, Philos. Mag. A 79, 203 (1999).

    Article  CAS  Google Scholar 

  21. K.N. Tu, Solder Joint Technology (New York: Springer, 2007).

    Google Scholar 

  22. M.J. Gore, M. Grujicic, G.B. Olson, and M. Cohen, Acta Metall. Mater. 37, 2849 (1989).

    Article  Google Scholar 

  23. Y.W. Shi, Y.F. Yan, J.P. Liu, Z.D. Xia, Y.P. Lei, F. Guo, and X.Y. Li, J. Electron. Mater. 38, 1866 (2009).

    Article  CAS  Google Scholar 

  24. J.A. Lee and G. Raynor, Proc. Phys. Soc. Lond. B 67, 737 (1954).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by IeMRC under Grant Code SP/06/03/01 in collaboration with Henkel Loctite Adhesives Ltd., Sondex (now GE Infra, Energy), and NPL.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Mokhtari.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Mokhtari, O., Roshanghias, A., Ashayer, R. et al. Disabling of Nanoparticle Effects at Increased Temperature in Nanocomposite Solders. J. Electron. Mater. 41, 1907–1914 (2012). https://doi.org/10.1007/s11664-012-1976-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-1976-y

Keywords

  • Nanocomposite
  • solder
  • grain boundary
  • hot compression