Advertisement

Journal of Electronic Materials

, Volume 41, Issue 6, pp 1159–1164 | Cite as

Structural and Thermoelectric Properties of Ba8Cu x Si23-x Ge23 (4.5 ≤ x ≤ 7)

  • X. Yan
  • M. Falmbigl
  • S. Laumann
  • A. Grytsiv
  • E. Bauer
  • P. Rogl
  • S. PaschenEmail author
Article

Abstract

Intermetallic clathrates are promising materials for thermoelectric applications at elevated temperatures. In the search for cost-competitive representatives, we investigate the thermoelectric properties of quaternary type I clathrates with nominal compositions Ba8Cu x Si23-x Ge23 (4.5 ≤ x ≤ 7). The specimens were prepared by melting and annealing with subsequent ball milling and hot pressing. X-ray diffraction and energy-dispersive x-ray spectroscopy were used for an accurate structure determination and for an analysis of the phase purity and microstructure, respectively. The transport properties show a systematic variation with the Cu content in the clathrate phase. The highest dimensionless thermoelectric figure of merit ZT of 0.31 is achieved for Ba8Cu6Si17Ge23 at about 250°C (520 K).

Keywords

Thermoelectric materials clathrates quaternary crystal structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Slack, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: CRC, 1995), p. 407.Google Scholar
  2. 2.
    G.A. Slack, Mater. Res. Soc. Symp. Proc. 478, 47 (1997).CrossRefGoogle Scholar
  3. 3.
    J.L. Cohn, G.S. Nolas, V. Fessatidis, T.H. Metcalf, and G.A. Slack, Phys. Rev. Lett. 82, 779 (1999).CrossRefGoogle Scholar
  4. 4.
    G.S. Nolas, T.J.R. Weakley, J.L. Cohn, and R. Sharma, Phys. Rev. B 61, 3845 (2000).CrossRefGoogle Scholar
  5. 5.
    G.S. Nolas, B.C. Chakoumakos, B. Mahieu, G.J. Long, and T.J.R. Weakley, Chem. Mater. 12, 1947 (2000).CrossRefGoogle Scholar
  6. 6.
    S. Paschen, W. Carrillo-Cabrera, A. Bentien, V.H. Tran, M. Baenitz, Y. Grin, and F. Steglich, Phys. Rev. B 64, 214404 (2001).CrossRefGoogle Scholar
  7. 7.
    Y. Mudryk, P. Rogl, C. Paul, S. Berger, E. Bauer, G. Hilscher, C. Godart, and H. Noël, J. Phys.: Condens. Matter 14, 7991 (2002).CrossRefGoogle Scholar
  8. 8.
    M. Christensen, S. Johnsen, and B.B. Iversen, Dalton Trans. 39, 978 (2010).CrossRefGoogle Scholar
  9. 9.
    N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, E. Bauer, R. Lackner, E. Royanian, M. Rotter, and G. Giester, J. Phys. Soc. Jpn. 77, 54 (2008).CrossRefGoogle Scholar
  10. 10.
    L.T.K. Nguyen, U. Aydemir, M. Baitinger, E. Bauer, H. Borrmann, U. Burkhardt, J. Custers, A. Haghighirad, R. Höfler, K.D. Luther, F. Ritter, W. Assmus, Yu. Grin, and S. Paschen, Dalton Trans. 39, 1071 (2010).CrossRefGoogle Scholar
  11. 11.
    N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, H. Schmid, and G. Giester, J. Solid State Chem. 182, 1754 (2009).CrossRefGoogle Scholar
  12. 12.
    N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, M. Rotter, R. Lackner, E. Bauer, L. Fornasari, F. Marabelli, and G. Giester, Phys. Rev. B 76, 195124 (2007).CrossRefGoogle Scholar
  13. 13.
    N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, M. Rotter, E. Bauer, G. Durand, H. Kaldarar, R. Lackner, H. Michor, E. Royanian, M. Koza, and G. Giester, Phys. Rev. B 76, 144118 (2007).CrossRefGoogle Scholar
  14. 14.
    N. Melnychenko-Koblyuk, A. Grytsiv, L. Fornasari, H. Kaldarar, H. Michor, F. Röhrbacher, M. Koza, E. Royanian, E. Bauer, P. Rogl, M. Rotter, H. Schmid, F. Marabelli, A. Devishvili, M. Doerr, and G. Giester, J. Phys.: Condens. Matter 19, 216223 (2007).CrossRefGoogle Scholar
  15. 15.
    P. Rogl, CRC Handbook of Thermoelectrics, Macro to Nano, ed. D.M. Rowe (New York: CRC Press, 2006), p. 32-1.Google Scholar
  16. 16.
    M. Christensen, A.B. Abrahamsen, N.B. Christensen, F. Juranyi, N.H. Andersen, K. Lefmann, J. Andreasson, C.R.H. Bal, and B.B. Iversen, Nature Mater. 7, 811 (2008).CrossRefGoogle Scholar
  17. 17.
    H. Schäfer, Annu. Rev. Mater. Sci. 15, 1 (1985).CrossRefGoogle Scholar
  18. 18.
    J. Rodriguez-Carvajal, FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis, at the Satellite Meeting on Powder Diffraction of the XV IUCr Congress, 127 (1990).Google Scholar
  19. 19.
    X. Yan, A. Grytsiv, G. Giester, E. Bauer, P. Rogl, and S. Paschen, J. Electron. Mater. 40, 589 (2011).CrossRefGoogle Scholar
  20. 20.
    G.J. Goldsmid and J.W. Sharp, J. Electron. Mater. 28, 869 (1999).CrossRefGoogle Scholar
  21. 21.
    J.S. Tse, T. Iitaka, T. Kume, and H. Shimizu, Phys. Rev. B 72, 155441 (2005).CrossRefGoogle Scholar
  22. 22.
    X. Shi, J. Yang, S. Bai, J. Yang, H. Wang, M. Chi, J.R. Salvador, W. Zhang, L. Chen, and W. Wong-Ng, Adv. Funct. Mater. 20, 755 (2010).CrossRefGoogle Scholar
  23. 23.
    S. Johnsen, A. Bentien, G.K.H. Madsen, and B.B. Iversen, Chem. Mater. 18, 4633 (2006).CrossRefGoogle Scholar
  24. 24.
    H.J. Goldsmid, Introduction to Thermoelectricity, Springer Series in Material Science 121, ed. R. Hull, R. M. Osgood, Jr., J. Parisi, and H. Warlimont (Berlin: Springer, 2010), ISBN 978-3-642-00715-6, Chap. 3, Eq. 3.30.Google Scholar
  25. 25.
    P.J. Price, Philos. Mag. 46, 1252 (1955).Google Scholar
  26. 26.
    E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, and R. Gladyshevskii, TYPIX Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types (Berlin: Springer, 1994).Google Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • X. Yan
    • 1
    • 2
  • M. Falmbigl
    • 2
  • S. Laumann
    • 1
  • A. Grytsiv
    • 2
  • E. Bauer
    • 1
  • P. Rogl
    • 2
  • S. Paschen
    • 1
    Email author
  1. 1.Institute of Solid State PhysicsVienna University of TechnologyViennaAustria
  2. 2.Institute of Physical ChemistryUniversity of ViennaViennaAustria

Personalised recommendations