Skip to main content
Log in

Structural and Thermoelectric Properties of Ba8Cu x Si23-x Ge23 (4.5 ≤ x ≤ 7)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Intermetallic clathrates are promising materials for thermoelectric applications at elevated temperatures. In the search for cost-competitive representatives, we investigate the thermoelectric properties of quaternary type I clathrates with nominal compositions Ba8Cu x Si23-x Ge23 (4.5 ≤ x ≤ 7). The specimens were prepared by melting and annealing with subsequent ball milling and hot pressing. X-ray diffraction and energy-dispersive x-ray spectroscopy were used for an accurate structure determination and for an analysis of the phase purity and microstructure, respectively. The transport properties show a systematic variation with the Cu content in the clathrate phase. The highest dimensionless thermoelectric figure of merit ZT of 0.31 is achieved for Ba8Cu6Si17Ge23 at about 250°C (520 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Slack, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: CRC, 1995), p. 407.

  2. G.A. Slack, Mater. Res. Soc. Symp. Proc. 478, 47 (1997).

    Article  CAS  Google Scholar 

  3. J.L. Cohn, G.S. Nolas, V. Fessatidis, T.H. Metcalf, and G.A. Slack, Phys. Rev. Lett. 82, 779 (1999).

    Article  CAS  Google Scholar 

  4. G.S. Nolas, T.J.R. Weakley, J.L. Cohn, and R. Sharma, Phys. Rev. B 61, 3845 (2000).

    Article  CAS  Google Scholar 

  5. G.S. Nolas, B.C. Chakoumakos, B. Mahieu, G.J. Long, and T.J.R. Weakley, Chem. Mater. 12, 1947 (2000).

    Article  CAS  Google Scholar 

  6. S. Paschen, W. Carrillo-Cabrera, A. Bentien, V.H. Tran, M. Baenitz, Y. Grin, and F. Steglich, Phys. Rev. B 64, 214404 (2001).

    Article  Google Scholar 

  7. Y. Mudryk, P. Rogl, C. Paul, S. Berger, E. Bauer, G. Hilscher, C. Godart, and H. Noël, J. Phys.: Condens. Matter 14, 7991 (2002).

    Article  CAS  Google Scholar 

  8. M. Christensen, S. Johnsen, and B.B. Iversen, Dalton Trans. 39, 978 (2010).

    Article  CAS  Google Scholar 

  9. N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, E. Bauer, R. Lackner, E. Royanian, M. Rotter, and G. Giester, J. Phys. Soc. Jpn. 77, 54 (2008).

    Article  Google Scholar 

  10. L.T.K. Nguyen, U. Aydemir, M. Baitinger, E. Bauer, H. Borrmann, U. Burkhardt, J. Custers, A. Haghighirad, R. Höfler, K.D. Luther, F. Ritter, W. Assmus, Yu. Grin, and S. Paschen, Dalton Trans. 39, 1071 (2010).

    Article  CAS  Google Scholar 

  11. N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, H. Schmid, and G. Giester, J. Solid State Chem. 182, 1754 (2009).

    Article  CAS  Google Scholar 

  12. N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, M. Rotter, R. Lackner, E. Bauer, L. Fornasari, F. Marabelli, and G. Giester, Phys. Rev. B 76, 195124 (2007).

    Article  Google Scholar 

  13. N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, M. Rotter, E. Bauer, G. Durand, H. Kaldarar, R. Lackner, H. Michor, E. Royanian, M. Koza, and G. Giester, Phys. Rev. B 76, 144118 (2007).

    Article  Google Scholar 

  14. N. Melnychenko-Koblyuk, A. Grytsiv, L. Fornasari, H. Kaldarar, H. Michor, F. Röhrbacher, M. Koza, E. Royanian, E. Bauer, P. Rogl, M. Rotter, H. Schmid, F. Marabelli, A. Devishvili, M. Doerr, and G. Giester, J. Phys.: Condens. Matter 19, 216223 (2007).

    Article  Google Scholar 

  15. P. Rogl, CRC Handbook of Thermoelectrics, Macro to Nano, ed. D.M. Rowe (New York: CRC Press, 2006), p. 32-1.

  16. M. Christensen, A.B. Abrahamsen, N.B. Christensen, F. Juranyi, N.H. Andersen, K. Lefmann, J. Andreasson, C.R.H. Bal, and B.B. Iversen, Nature Mater. 7, 811 (2008).

    Article  CAS  Google Scholar 

  17. H. Schäfer, Annu. Rev. Mater. Sci. 15, 1 (1985).

    Article  Google Scholar 

  18. J. Rodriguez-Carvajal, FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis, at the Satellite Meeting on Powder Diffraction of the XV IUCr Congress, 127 (1990).

  19. X. Yan, A. Grytsiv, G. Giester, E. Bauer, P. Rogl, and S. Paschen, J. Electron. Mater. 40, 589 (2011).

    Article  CAS  Google Scholar 

  20. G.J. Goldsmid and J.W. Sharp, J. Electron. Mater. 28, 869 (1999).

    Article  CAS  Google Scholar 

  21. J.S. Tse, T. Iitaka, T. Kume, and H. Shimizu, Phys. Rev. B 72, 155441 (2005).

    Article  Google Scholar 

  22. X. Shi, J. Yang, S. Bai, J. Yang, H. Wang, M. Chi, J.R. Salvador, W. Zhang, L. Chen, and W. Wong-Ng, Adv. Funct. Mater. 20, 755 (2010).

    Article  CAS  Google Scholar 

  23. S. Johnsen, A. Bentien, G.K.H. Madsen, and B.B. Iversen, Chem. Mater. 18, 4633 (2006).

    Article  CAS  Google Scholar 

  24. H.J. Goldsmid, Introduction to Thermoelectricity, Springer Series in Material Science 121, ed. R. Hull, R. M. Osgood, Jr., J. Parisi, and H. Warlimont (Berlin: Springer, 2010), ISBN 978-3-642-00715-6, Chap. 3, Eq. 3.30.

  25. P.J. Price, Philos. Mag. 46, 1252 (1955).

    CAS  Google Scholar 

  26. E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, and R. Gladyshevskii, TYPIX Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types (Berlin: Springer, 1994).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Paschen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, X., Falmbigl, M., Laumann, S. et al. Structural and Thermoelectric Properties of Ba8Cu x Si23-x Ge23 (4.5 ≤ x ≤ 7). J. Electron. Mater. 41, 1159–1164 (2012). https://doi.org/10.1007/s11664-011-1897-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1897-1

Keywords

Navigation