Skip to main content
Log in

Effects of Codoping with Ga and P on Thermoelectric Properties of Ba8Al16Si30 Clathrate System

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have investigated the effects of Codoping With Ga and P on the thermoelectric properties of the Ba8Al16Si30 clathrate system, attempting to optimize the carrier concentration. The elastic properties, which are important for design of thermoelectric devices, were investigated by ultrasonic testing. Ga/P-codoped specimens with nominal compositions Ba8Al16Ga x Si30−2x P x (x = 1.0, 1.5, 2.0) were prepared by arc melting and spark plasma sintering and their Seebeck coefficient, electrical conductivity, and thermal conductivity were measured. Analytical studies revealed that the total content of Al and Ga, expressed as atoms per formula unit, increased to 15.65 at nominal x = 2.0, exceeding the maximum content (y = 15.16) of Al for the Ba8Al y Si46−y clathrate system. Ultrasonic tests determined the Young’s modulus, shear modulus, bulk modulus, and Poisson’s ratio to be 102.55 GPa, 40.14 GPa, 76.85 GPa, and 0.2775, respectively, for Ba8Al16Ga x Si30−2x P x (x = 2.0). The Hall carrier concentration decreased from ∼1.0 × 1021 cm−3 for Ba8Al y Si46−y to ∼6.3 × 1020 cm−3 for Ba8Al16Ga x Si30−2x P x (x = 2.0), suggesting that Ga/P codoping may be useful for tuning the carrier concentration. The value of the Seebeck coefficient at ∼320 K increased from −46 μV K−1 for Ba8Al y Si46−y to −67 μV K−1 for Ba8Al16Ga x Si30−2x P x (x = 2.0). The dimensionless thermoelectric figure␣of merit ZT at 900 K improved from ∼0.4 for Ba8Al y Si46−y to ∼0.47 for Ba8Al16Ga x Si30−2x P x (x = 2.0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Slack, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: CRC, 1995), pp. 407–440.

    Google Scholar 

  2. G.A. Slack, Materials Research Society Symposium Proceedings, vol. 478, ed. T.M. Tritt, M.G. Kanatzidis, H.B. Lyon, Jr., and G.D. Mahan (Warrendale, PA: MRS Press, 1997), pp. 47–54.

    Google Scholar 

  3. G. Nolas, J.L. Cohn, G.A. Slack, and S.B. Schujman, Appl. Phys. Lett. 73, 178 (1998).

    Article  Google Scholar 

  4. J.L. Cohn, G.S. Nolas, V. Fessatidis, T.H. Metcalf, and G.A. Slack, Phys. Rev. Lett. 82, 779 (1999).

    Article  Google Scholar 

  5. V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, J. Appl. Phys. 87, 7871 (2000).

    Article  Google Scholar 

  6. H. Anno, M. Hokazono, M. Kawamura, J. Nagao, and K. Matsubara, IEEE Proceedings of the XXI International Conference on Thermoelectrics (ICT2002) (Piscataway, NJ: IEEE, 2002), pp. 77–80.

    Google Scholar 

  7. A. Saramat, G. Svensson, A.E.C. Palmqvist, C. Stiewe, E. Mueller, and D.M. Rowe, J. Appl. Phys. 99, 023708 (2006).

    Article  Google Scholar 

  8. J.-H. Kim, N.L. Okamoto, K. Kishida, K. Tanaka, and H. Inui, Acta Mater. 54, 2057 (2006).

    Article  Google Scholar 

  9. N.L. Okamoto, K. Kishida, K. Tanaka, and H. Inui, J. Appl. Phys. 101, 113525 (2007).

    Article  Google Scholar 

  10. E.S. Toberer, M. Christensen, B.B. Iversen, and G.J. Snyder, Phys. Rev. B 77, 075203 (2008).

    Article  Google Scholar 

  11. S. Deng, Y. Saiga, K. Suekuni, and T. Takabatake, J. Appl. Phys. 108, 073705 (2010).

    Article  Google Scholar 

  12. L.T.K. Nguyen, U. Aydemir, M. Baitinger, E. Bauer, H. Borrmann, U. Burkhardt, J. Custers, A. Haghighirad, R. Hoefler, K.D. Luther, F. Ritter, W. Assmus, Y. Grin, and S. Paschen, Dalton Trans. 39, 1071 (2010).

    Article  Google Scholar 

  13. N. Tsujii, J.H. Roudebush, A. Zevalkink, C.A. Cox-Uvarov, G.J. Snyder, and S.M. Kauzlarich, J. Solid State Chem. 184, 1293 (2011).

    Article  Google Scholar 

  14. H. Zhang, H. Borrmann, N. Oeschler, C. Candolfi, W. Schnelle, M. Schmidt, U. Burkhardt, M. Baitinger, J.-T. Zhao, and Y. Grin, Inorg. Chem. 50, 1250 (2011).

    Article  Google Scholar 

  15. H. Anno, H. Yamada, T. Nakabayashi, M. Hokazono, and R. Shirataki, J. Solid State Chem. 193, 94 (2012).

    Article  Google Scholar 

  16. H. Anno, M. Hokazono, R. Shirataki, and Y. Nagami, J. Mater. Sci. 48, 2846 (2013).

    Article  Google Scholar 

  17. X. Yan, E. Bauer, P. Rogl, and S. Paschen, Phys. Rev. B 87, 115206 (2013).

    Article  Google Scholar 

  18. M. Falmbigl, A. Grytsiv, P. Rogl, P. Heinrich, E. Royanian, and E. Bauer, J. Alloys Compd. 567, 65 (2013).

    Article  Google Scholar 

  19. H. Anno and R. Shirataki, Phys. Status Solidi A 211, 1288 (2014).

    Article  Google Scholar 

  20. H. Anno and R. Shirataki, J. Electron. Mater. 43, 1847 (2014).

    Article  Google Scholar 

  21. H. Anno and R. Shirataki, J. Electron. Mater. 44, 1413 (2015).

    Article  Google Scholar 

  22. H. Anno, T. Ueda, S. Hirata, T. Kameyama, T. Iida, and Y. Kogo, J. Electron. Mater. 45, 1803 (2016).

    Article  Google Scholar 

  23. B. Eisenmann, H. Schäfer, and R. Zagler, J. Less-Common Met. 118, 43 (1986).

    Article  Google Scholar 

  24. Y. Mudryk, P. Rogl, C. Paul, S. Berger, E. Bauer, G. Hilsher, C. Godart, and H. Noël, J. Phys. Condens. Matter 14, 7991 (2002).

    Article  Google Scholar 

  25. T. Uemura, K. Koga, K. Akai, and M. Matsuura, Trans. Mater. Res. Soc. Jpn. 31, 311 (2006).

    Google Scholar 

  26. C.L. Condron, S.M. Kauzlarich, F. Gascoin, and G.J. Snyder, Chem. Mater. 18, 4939 (2006).

    Article  Google Scholar 

  27. C.L. Condron, J. Martin, G.S. Nolas, P.M.B. Piccoli, A.J. Schultz, and S.M. Kauzlarich, Inorg. Chem. 45, 9381 (2006).

    Article  Google Scholar 

  28. C.L. Condron, S.M. Kauzlarich, and G.S. Nolas, Inorg. Chem. 46, 2556 (2007).

    Article  Google Scholar 

  29. C.L. Condron, S.M. Kauzlarich, T. Ikeda, G.J. Snyder, F. Haarmann, and P. Jeglic, Inorg. Chem. 47, 8204 (2008).

    Article  Google Scholar 

  30. J.H. Roudebush, E.S. Toberer, H. Hope, G.J. Snyder, and S.M. Kauzlarich, J. Solid State Chem. 184, 1176 (2011).

    Article  Google Scholar 

  31. N. Mugita, Y. Nakakohara, T. Motooka, R. Teranishi, and S. Munetoh, Mater. Sci. Eng. 18, 142007 (2011).

    Google Scholar 

  32. Y. Nagatomo, N. Mugita, Y. Nakakohara, M. Saisho, M. Tajiri, R. Teranishi, and S. Munetoh, J. Phys. Conf. Ser. 379, 012008 (2012).

    Article  Google Scholar 

  33. J.H. Roudebush, N. Tsujii, A. Hurtando, H. Hope, Y. Grin, and S.M. Kauzlarich, Inorg. Chem. 51, 4161 (2012).

    Article  Google Scholar 

  34. J.H. Roudebush, C. de la Cruz, B.C. Chakoumakos, and S.M. Kauzlarich, Inorg. Chem. 51, 1805 (2012).

    Article  Google Scholar 

  35. H. Anno, M. Hokazono, R. Shirataki, and Y. Nagami, J. Electron. Mater. 42, 2326 (2013).

    Article  Google Scholar 

  36. D. Kikuchi, J. Tadokoro, and T. Eguchi, J. Electron. Mater. 43, 2141 (2014).

    Article  Google Scholar 

  37. Y. Onizuka, T. Oka, T. Osada, H. Miura, S. Munetoh, and O. Furukimi, J. Electron. Mater. 43, 2059 (2014).

    Article  Google Scholar 

  38. H. Anno and R. Shirataki, Key Eng. Mater. 617, 243 (2014).

    Article  Google Scholar 

  39. H. Katayama-Yoshida and T. Yamamoto, Phys. Status Solidi B 202, 763 (1997).

    Article  Google Scholar 

  40. T. Yamamoto and H. Katayama-Yoshida, Phys. B 302/303, 155 (2001).

    Article  Google Scholar 

  41. C.L. Condron, H. Hope, P.M.B. Piccoli, A.J. Schultz, and S.M. Kauzlarich, Inorg. Chem. 46, 4523 (2007).

    Article  Google Scholar 

  42. N.P. Blake, S. Latturner, J.D. Bryan, G.D. Stucky, and H. Metiu, J. Chem. Phys. 115, 8060 (2001).

    Article  Google Scholar 

  43. H.J. Goldsmid, Electronic Refrigeration (London: Pion Limited, 1986), pp. 58–64.

    Google Scholar 

  44. P.G. Klemens, Phys. Rev. 119, 507 (1960).

    Article  Google Scholar 

  45. J. Callaway and H.C. Baeyer, Phys. Rev. 120, 1149 (1960).

    Article  Google Scholar 

  46. B. Abeles, Phys. Rev. 131, 1906 (1963).

    Article  Google Scholar 

  47. J. Yang, Thermal Conductivity—Theory, Properties, and Applications—Physics of Solids and Liquids, ed. T.M. Tritt (New York, NY: Kluwer Academic/Plenum, 2004), p. 1.

    Google Scholar 

  48. M. Falmbigl, S. Puchegger, and P. Rogl, The Physics and Chemistry of Inorganic Clathrates, Springer Series in Materials Science, vol. 199, ed. G.S. Nolas (Dordrecht: Springer, 2014), pp. 277–326.

    Google Scholar 

  49. G. Li, K.R. Gadelrab, T. Souier, P.L. Potapov, G. Chen, and M. Chiesa, Nanotechnology 23, 065703 (2012).

    Article  Google Scholar 

  50. Y. Gelbstein, J. Tunbridge, R. Dixon, M.J. Reece, H. Ning, R. Gilchrist, R. Summers, I. Agote, M.A. Lagos, K. Simpson, C. Rouaud, P. Feulner, S. Rivera, R. Torrecillas, M. Husband, J. Crossley, and I. Robinson, J. Electron. Mater. 43, 1703 (2014).

    Article  Google Scholar 

  51. R.D. Schmidt, E.D. Case, J. Giles III, J.E. Ni, and T.P. Hogan, J. Electron. Mater. 41, 1210 (2012).

    Article  Google Scholar 

  52. G. Rogl, A. Grytsiv, E. Royanian, P. Heinrich, E. Bauer, P. Rogl, M. Zehetbauer, S. Puchegger, M. Reinecker, and W. Schranz, Acta Mater. 61, 4066 (2013).

    Article  Google Scholar 

  53. D. Kenfaui, D. Chateigner, M. Gomina, and J.G. Noudem, J. Alloys Compd. 490, 472 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by JSPS KAKENHI Grant No. JP25420763. This paper is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Anno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anno, H., Ueda, T. & Okamoto, K. Effects of Codoping with Ga and P on Thermoelectric Properties of Ba8Al16Si30 Clathrate System. J. Electron. Mater. 46, 1730–1739 (2017). https://doi.org/10.1007/s11664-016-5219-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5219-5

Keywords

Navigation