Skip to main content
Log in

Thermoelectric Properties of Cu-doped Bi0.4Sb1.6Te3 Prepared by Hot Extrusion

  • Topical Collection: International Conference on Thermoelectrics 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cu0.003Bi0.4Sb1.6Te3 alloys were prepared by using encapsulated melting and hot extrusion (HE). The hot-extruded specimens had the relative average density of 98%. The (00l) planes were preferentially oriented parallel to the extrusion direction, but the specimens showed low crystallographic anisotropy with low orientation factors. The specimens were hot-extruded at 698 K, and they showed excellent mechanical properties with a Vickers hardness of 76 Hv and a bending strength of 59 MPa. However, as the HE temperature increased, the mechanical properties degraded due to grain growth. The hot-extruded specimens showed positive Seebeck coefficients, indicating that the specimens have p-type conduction. These specimens exhibited negative temperature dependences of electrical conductivity, and thus behaved as degenerate semiconductors. The Seebeck coefficient reached the maximum value at 373 K and then decreased with increasing temperature due to intrinsic conduction. Cu-doped specimens exhibited high power factors due to relatively higher electrical conductivities and Seebeck coefficients than those of undoped specimens. A thermal conductivity of 1.00 Wm−1 K−1 was obtained at 373 K for Cu0.003Bi0.4Sb1.6Te3 hot-extruded at 723 K. A maximum dimensionless figure of merit, ZT max = 1.05, and an average dimensionless figure of merit, ZT ave = 0.98, were achieved at 373 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Goldsmid, Thermoelectric Refrigeration (New York: Plenum, 1964), p. 43.

    Book  Google Scholar 

  2. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  3. L. Hu, T. Zhu, X. Liu, and X. Zhao, Adv. Funct. Mater. 24, 5211 (2014).

    Article  Google Scholar 

  4. B. Ryu and M.W. Oh, J. Korean Cer. Soc. 53, 273 (2016).

    Article  Google Scholar 

  5. J.R. Drabble and C.H.L. Goodman, J. Phys. Chem. Sol. 5, 142 (1958).

    Article  Google Scholar 

  6. L.G. Schulz, J. Appl. Phys. 20, 1030 (1949).

    Article  Google Scholar 

  7. X.F. Tang, W.J. Xie, H. Li, W.Y. Zhao, and Q.J. Zhang, Appl. Phys. Lett. 90, 012102 (2007).

    Article  Google Scholar 

  8. M. Ferhat, G. Brun, J.C. Tedenac, M. Nouaoura, and L. Lassabatere, J. Cryst. Grow. 167, 122 (1996).

    Article  Google Scholar 

  9. D. Vasilevskiy, A. Sami, J.M. Simard, and R. Masut, J. Appl. Phys. 92, 2610 (2002).

    Article  Google Scholar 

  10. S.J. Hong and B.S. Chun, Mater. Sci. Eng. A 356, 345 (2003).

    Article  Google Scholar 

  11. S. Miura, Y. Sato, K. Fukuda, K. Nishimura, and K. Ikeda, Mater. Sci. Eng. 277, 244 (2000).

    Article  Google Scholar 

  12. G.R. Miller and C.Y. Li, J. Phys. Chem. Sol. 26, 173 (1965).

    Article  Google Scholar 

  13. J. Horak, K. Cermak, and L. Koudelka, J. Phys. Chem. Sol. 47, 805 (1986).

    Article  Google Scholar 

  14. Z. Stary, J. Horak, M. Stordeur, and M. Stolzer, J. Phys. Chem. Sol. 49, 29 (1988).

    Article  Google Scholar 

  15. A. Hashibon and C. Elsasser, Phys. Rev. B 84, 144117 (2011).

    Article  Google Scholar 

  16. S. Chen, K.F. Cai, F.Y. Li, and S.Z. Chen, J. Electron. Mater. 43, 1966 (2014).

    Article  Google Scholar 

  17. R.O. Carlson, J. Phys. Chem. Sol. 13, 65 (1960).

    Article  Google Scholar 

  18. T.A. McCarthy and H.J. Goldsmid, J. Phys. D Appl. Phys. 3, 697 (1970).

    Article  Google Scholar 

  19. W.S. Liu, Q. Zhang, Y. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Wang, G. Chen, and Z. Ren, Adv. Energy Mater. 1, 577 (2011).

    Article  Google Scholar 

  20. M.K. Han, K. Ahn, H.J. Kim, J.S. Rhyee, and S.J. Kim, J. Mater. Chem. 21, 11365 (2011).

    Article  Google Scholar 

  21. J.L. Cui, L.D. Mao, W. Yang, X.B. Xu, D.Y. Chen, and W.J. Xiu, J. Sol. State Chem. 180, 3583 (2007).

    Article  Google Scholar 

  22. H. Li, H. Jing, Y. Han, Y. Xu, G.Q. Lu, and L. Xu, J. Alloys Compd. 576, 369 (2013).

    Article  Google Scholar 

  23. J. Seo, D. Cho, K. Park, and C. Lee, Mater. Res. Bull. 35, 2157 (2000).

    Article  Google Scholar 

  24. X.A. Fan, J.Y. Yang, W. Zhu, S.Q. Bao, X.K. Duan, C.J. Xiao, and K. Li, J Alloys Compd. 461, 9 (2008).

    Article  Google Scholar 

  25. W. J. Jung and I. H. Kim, Met. Mater. Int. 24 (2018) (in press).

  26. Z.L. Wang, T. Akao, T. Onda, and Z.C. Chen, J. Alloys Compd. 663, 134 (2016).

    Article  Google Scholar 

  27. T. Hayashi, M. Sekine, J. Suzuki, Y. Horio, and H. Takizawa, Mater. Trans. 48, 2724 (2007).

    Article  Google Scholar 

  28. F.K. Lotgering, J. Inorg. Nucl. Chem. 9, 113 (1959).

    Article  Google Scholar 

  29. M.K. Keshavarz, D. Vasilevskiy, R.A. Masut, and S. Turenne, Mater. Des. 103, 114 (2016).

    Article  Google Scholar 

  30. W.J. Jung and I.H. Kim, J. Korean Phys. Soc. 70, 511 (2017).

    Article  Google Scholar 

  31. H.S. Shin, H.P. Ha, D.B. Hyun, J.D. Shim, and D.H. Lee, J. Phys. Chem. Sol. 58, 671 (1997).

    Article  Google Scholar 

  32. L. Hu, H. Gao, X. Liu, H. Xie, J. Shen, T. Zhu, and X. Zhao, J. Mater. Chem. 22, 16484 (2012).

    Article  Google Scholar 

  33. H. Cailat, A. Borshchevsky, and J.P. Fleurial, J. Appl. Phys. 80, 4442 (1996).

    Article  Google Scholar 

  34. Y.S. Lim, M.S. Song, S.I. Lee, T.H. An, C. Park, and W.S. Seo, J. Alloys Compd. 687, 320 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, WJ., Kim, IH. Thermoelectric Properties of Cu-doped Bi0.4Sb1.6Te3 Prepared by Hot Extrusion. J. Electron. Mater. 47, 3136–3142 (2018). https://doi.org/10.1007/s11664-017-5840-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5840-y

Keywords

Navigation