Skip to main content
Log in

Aqueous-Develop, Photosensitive Polynorbornene Dielectric: Optimization of Mechanical and Electrical Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The impact of thermal cure conditions on the mechanical and electrical properties of an epoxy cross-linked network incorporating a polynorbornene (PNB) dielectric polymer was studied. The cross-linking of the dielectric composition was achieved by an acid-catalyzed cationic cure reaction initiated by either thermal or photolytic activation of a photoacid generator. It is proposed that the observed mechanical and electrical properties of the fully cured polymer composition are the result of the development of a three-dimensional cross-linked network tying together the PNB polymer and multifunctional epoxy additives. The epoxy ring-opening reaction was measured using Fourier-transform infrared spectroscopy. The reduced modulus, internal film stress, dielectric constant, and swelling behavior of cross-linked films were studied as a function of curing temperature. Trends in the observed properties are explained by formation of a three-dimensional cross-linked network and degradation of the cross-links between the multifunctional epoxy additives at high temperature. It was also found that exposure of the film to aqueous base plays a role in the cure process and has a positive effect on the final properties. The optimum values of modulus, dielectric constant, residual stress, and moisture content were found for films cured at 160°C for 1 h. This relatively low cure temperature is potentially advantageous in device assembly and processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.Q. Bai, P. Chiniwalla, E. Elce, R.A. Shick, J. Sperk, S.A.B. Allen, and P.A. Kohl, J. Appl. Polym. Sci. 91, 3023–3030 (2004).

    Article  CAS  Google Scholar 

  2. R. Tummala, E. Rytmaszewski, and A. Klopfenstein, Microelectronics Packaging Handbook: Technology Drivers (Boston, MA: Kluwer Academic, 1997).

    Google Scholar 

  3. P. Singer, Semicond. Int. 19, 88 (1996).

    CAS  Google Scholar 

  4. L. Peters, Industry Divides on Low-k Dielectric Choices. Semiconductor International, May (2001).

  5. G. Maier, Prog. Polym. Sci. 26, 3–65 (2001).

    Article  CAS  Google Scholar 

  6. K. Maex, M. Baklanov, D. Shamiryan, S. Brongersma, and Z. Yanovitskaya, J. Appl. Phys. 93, 8793 (2003).

    Article  CAS  Google Scholar 

  7. N. Grove, P. Kohl, S. Allen, S. Jayaraman, and R. Shick, J. Polym. Sci. B: Polym. Phys. 37, 3003–3010 (1999).

    Article  CAS  Google Scholar 

  8. N. Grove, P. Kohl, S. Bidstrup-Allen, R. Shick, B. Goodall, and S. Jayaraman, Polynorbornene for Low K Interconnection (Materials Research Society, 1997), p. 3.

  9. V. Rajarathinam, C.H. Lightsey, T. Osborn, B. Knapp, E. Elce, S.A.B. Allen, and P.A. Kohl, J. Electron. Mater. 38, 778–786 (2009).

    Article  CAS  Google Scholar 

  10. M. Raeis Zadeh, E. Elce, B. Knapp, and P.A. Kohl, J. Appl. Polym. Sci. 120, 1916–1925 (2011).

    Article  CAS  Google Scholar 

  11. P. Plesch, The Chemistry of Cationic Polymerization (New York: Pergamon, 1963).

    Google Scholar 

  12. J. Fouassier and J. Rabek, Radiation Curing in Polymer Science and Technology: Fundamentals and Methods (New York: Springer, 1993).

    Book  Google Scholar 

  13. L. Matejka, K. Dušek, and I. Dobáš, Polym. Bull. 14, 309–315 (1985).

    CAS  Google Scholar 

  14. C. Decker, Prog. Polym. Sci. 21, 593–650 (1996).

    Article  CAS  Google Scholar 

  15. G. Cai and W.P. Weber, Polymer 45, 2941–2948 (2004).

    Article  CAS  Google Scholar 

  16. M. Moniruzzaman, F. Du, N. Romero, and K.I. Winey, Polymer 47, 293–298 (2006).

    Article  CAS  Google Scholar 

  17. P. Chiniwalla, Y. Bai, E. Elce, R. Shick, W. McDougall, S. Allen, and P. Kohl, J. Appl. Polym. Sci. 89, 568–577 (2003).

    Article  CAS  Google Scholar 

  18. P. Chiniwalla, Y. Bai, R. Elce, S. Allen, and P. Kohl, J. Appl. Polym. Sci. 91, 1020–1029 (2003).

    Article  Google Scholar 

  19. Y.Q. Bai, P. Chiniwalla, E. Elce, S.A.B. Allen, and P.A. Kohl, J. Appl. Polym. Sci. 91, 3031–3039 (2004).

    Article  CAS  Google Scholar 

  20. J. Crivello, T. Lockhart, and J. Lee, J. Polym. Sci. Polym. Chem. Ed. 21, 97–109 (1983).

    Article  CAS  Google Scholar 

  21. H.S. Yu, T. Yamashita, and K. Horie, Macromolecules 29, 1144–1150 (1996).

    Article  CAS  Google Scholar 

  22. B. Plage and H. Schulten, Macromolecules 21, 2018–2027 (1988).

    Article  CAS  Google Scholar 

  23. M. Soh and A. Yap, J. Dent. 32, 321–326 (2004).

    Article  CAS  Google Scholar 

  24. J. Mark, Rubber Chem. Technol. 55, 762–779 (1982).

    Article  CAS  Google Scholar 

  25. M. Raeis Zadeh, E. Elce, B. Knapp, and P. Kohl, J. Appl. Polym. Sci. 120, 1916–1925 (2011).

    Article  CAS  Google Scholar 

  26. ASTM Materials, Standard Test Methods for AC Loss Characteristics and Permittivity (Dielectric Constant) of Solid Electrical Insulating Materials (1992).

  27. Thin Films Stress Measurement System, Operational Manual, Model F2320 (San Jose, CA: Flexus Inc.).

  28. C.A. Klein, J. Appl. Phys. 88, 5487–5489 (2000).

    Article  CAS  Google Scholar 

  29. G. Shaw, J. Trethewey, A. Johnson, W. Drugan, and W. Crone, Adv. Mater. 17, 1123–1127 (2005).

    Article  CAS  Google Scholar 

  30. J. Loubet, J. Georges, O. Marchesini, and G. Meille, J. Tribol. 106, 43 (1984).

    Article  CAS  Google Scholar 

  31. B.J. Briscoe, L. Fiori, and E. Pelillo, J. Phys. D Appl. Phys. 31, 2395–2405 (1998).

    Article  CAS  Google Scholar 

  32. M. VanLandingham, J. Villarrubia, W. Guthrie, and G. Meyers, Nanoindentation of Polymers: An Overview (New York: Wiley, 2001), pp. 15–44.

    Google Scholar 

  33. L. Shen, I.Y. Phang, T.X. Liu, and K.Y. Zeng, Polymer 45, 8221–8229 (2004).

    Article  CAS  Google Scholar 

  34. W. Oliver and G. Pharr, J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

  35. E. Wornyo, K. Gall, F. Yang, and W. King, Polymer 48, 3213–3225 (2007).

    Article  CAS  Google Scholar 

  36. P. Chiniwalla, Chemical Engineering (Georgia Institue of Technology, 2001).

  37. Y. Zang, R. Muller, and D. Froelich, Polymer 30, 2060–2062 (1989).

    Article  CAS  Google Scholar 

  38. P. Flory and Y. Tatara, J. Polym. Sci. Polym. Phys. Ed. 13, 683–702 (1975).

    Article  CAS  Google Scholar 

  39. S. Rosen, Fundamental Principles of Polymeric Materials (New York: Wiley, 1982).

    Google Scholar 

  40. J. Crivello and J. Lee, J. Polym. Sci. Polym. Chem. Ed. 21, 1097–1110 (1983).

    Article  CAS  Google Scholar 

  41. J. Brydson, Plastic Materials (Woburn: Reed International Books, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Kohl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raeis-Zadeh, M., Melendez, N.D., Chen, YC. et al. Aqueous-Develop, Photosensitive Polynorbornene Dielectric: Optimization of Mechanical and Electrical Properties. J. Electron. Mater. 40, 2126–2138 (2011). https://doi.org/10.1007/s11664-011-1704-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1704-z

Keywords

Navigation