Skip to main content
Log in

Dislocation Analysis in (112)B HgCdTe/CdTe/Si

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

High-quality (112)B HgCdTe/Si epitaxial films with a dislocation density of ∼9 × 105 cm−2 as determined by etch pit density (EPD) measurements have been obtained by thermal cyclic annealing (TCA). The reduction of the dislocation density by TCA has led to a simple rate-equation-based model to explain the relationship between dislocation density and TCA parameters (time, temperature, and number of anneals). In this model, dislocation density reduction is based on dislocation coalescence and annihilation, assumed to be caused by dislocation motion under thermal and misfit stress. An activation energy for dislocation motion in n-type (112)B HgCdTe/Si of 0.93 ± 0.1 eV was determined. This model with no adjustable parameters was used to predict recent TCA annealing results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.K. Dhar, P.R. Boyd, M. Martinka, J.H. Dinan, L.A. Almeida, and N. Goldsman, J. Electron. Mater. 29, 748 (2000).

    Article  CAS  Google Scholar 

  2. H. Figgemeier, J. Electron. Mater. 32, 588 (2003).

    Article  CAS  Google Scholar 

  3. G.A. Carini, C. Arnone, A.E. Bolotnikov, G.S. Camarda, R.E. DeWames, J.H. Dinan, J.K. Markunas, B. Raghothamacher, S. Sivananthan, R. Smith, J. Zhao, Z. Zhong, and R.B. James, J. Electron. Mater. 35, 1495 (2006).

    Article  CAS  Google Scholar 

  4. L.A. Almeida, M. Groenert, J. Markunas, and J.H. Dinan, J. Electron. Mater. 35, 1214 (2006).

    Article  CAS  Google Scholar 

  5. D. Edwall, E. Piqutte, J. Ellsworth, J. Arias, C.H. Swartz, L. Bai, R.P. Tompkins, N.C. Giles, T.H. Myers, and M. Berding, J. Electron. Mater. 33, 752 (2004).

    Article  CAS  Google Scholar 

  6. M. Martinka, L.A. Almeida, J.D. Benson, and J.H. Dinan, J. Electron. Mater. 31, 732 (2002).

    Article  CAS  Google Scholar 

  7. T.J. de Lyon, J.E. Jensen, M.D. Gorwitz, C.A. Cockrum, S.M. Johnson, and G.M. Venzor, J. Electron. Mater. 28, 705 (1999).

    Article  Google Scholar 

  8. Y.P. Chen, G. Brill, E.M. Campo, T. Hierl, J.C.M. Hwang, and N.K. Dhar, J. Electron. Mater. 33, 498 (2004).

    Article  CAS  Google Scholar 

  9. M. Carmody, J.G. Pasko, D. Edwall, M. Darasellia, L.A. Almeida, J. Molstad, J.H. Dinan, J.K. Markunas, Y. Chen, G. Brill, and N.K. Dhar, J. Electron. Mater. 33, 531 (2004).

    Article  CAS  Google Scholar 

  10. M. Carmody, J.G. Pasko, D. Edwall, R. Bailey, J. Arias, S. Cabelli, J. Bajaj, L.A. Almeida, J.H. Dinan, M. Groenert, A.J. Stoltz, Y. Chen, G. Brill, and N.K. Dhar, J. Electron. Mater. 34, 832 (2005).

    Article  CAS  Google Scholar 

  11. S.M. Johnson, A.A. Buell, M.F. Vilela, J.M. Peterson, J.B. Varesi, M.D. Newton, G.M. Venzor, R.E. Bornfreund, W.A. Radford, E.P.G. Smith, J.P. Rosbeck, T.J. De Lyon, J.E. Jensen, and V. Nathan, J. Electron. Mater. 33, 526 (2004).

    Article  CAS  Google Scholar 

  12. Y. Chen, S. Farrell, G. Brill, P. Wijewarnasuriya, and N. Dhar, J. Cryst. Growth 310, 5303 (2008).

    Article  CAS  Google Scholar 

  13. G. Brill, Y.P. Chen, P.S. Wijewarnasuria, N. Dhar, S. Farrell, M.V. Rao, J.D. Benson, and N. Dhar, J. Electron. Mater. 39, 967 (2010).

    Article  CAS  Google Scholar 

  14. S. Farrell, M.V. Rao, G. Brill, Y. Chen, P. Wijewarnasuriya, N. Dhar, J.D. Benson, and K. Harris, J. Electron. Mater. 40 (2011). doi:10.1007/s11664-011-1669-y.

  15. M. Yamaguchi, M. Tachikawa, Y. Itoh, M. Sugo, and S. Kondo, J. Appl. Phys. 68, 4518 (1990).

    Article  CAS  Google Scholar 

  16. S. Farrell, G. Brill, Y. Chen, P.S. Wijewarnasuriya, M.V. Rao, N. Dhar, and K. Harris, J. Electron. Mater. 39, 43 (2010).

    Article  CAS  Google Scholar 

  17. H.F. Schaake and A.J. Lewis, Mater. Res. Soc. Symp. Proc. 14, 301 (1983).

    Article  CAS  Google Scholar 

  18. J.D. Benson, L.O. Bubulac, P.J. Smith, R.N. Jacobs, J.K. Markunas, M. Jaime-Vasquez, L.A. Almeida, A.J. Stoltz, P.S. Wijewarnasuriya, G. Brill, Y. Chen, U. Lee, M.F. Vilela, J. Peterson, S.M. Johnson, D.D. Lofgreen, D. Rhiger, E.A. Patten, and P.M. Goetz, J. Electron. Mater. 39, 1080 (2010).

    Google Scholar 

  19. M. Yamaguchi, J. Mater. Res. 6, 376 (1991).

    Article  CAS  Google Scholar 

  20. M.M. Al-Jassim, T. Nishioka, Y. Itoh, A. Yamamoto, and M. Yamaguchi, Materials Research Society Symposium Proceedings, vol. 116 (Pittsburgh, PA: Material Research Society, 1988), p. 141.

  21. J. Weertman and J. Weertman, Elementary Dislocation Theory (Oxford: Oxford University Press, 1992), pp. 173–181.

    Google Scholar 

  22. J.E. Ayers, Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization (Boca Raton: CRC, 2007), pp. 233–237.

    Book  Google Scholar 

  23. A.E. Romanov, W. Pompe, G.E. Beltz, and J.S. Speck, Appl. Phys. Lett. 69, 3342 (1996).

    Article  CAS  Google Scholar 

  24. J.S. Speck, M.A. Brewer, G.E. Beltz, A.E. Romanov, and W. Pompe, J. Appl. Phys. 80, 3808 (1996).

    Article  CAS  Google Scholar 

  25. P. Rudolph, Cryst. Res. Technol. 40, 7 (2005).

    Article  CAS  Google Scholar 

  26. S.K. Choi, M. Mihara, and T. Ninomiya, Jpn. J. Appl. Phys. 16, 737 (1977).

    Article  CAS  Google Scholar 

  27. T. Sasaki and N. Oda, J. Appl. Phys. 78, 3121 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Benson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benson, J.D., Farrell, S., Brill, G. et al. Dislocation Analysis in (112)B HgCdTe/CdTe/Si. J. Electron. Mater. 40, 1847–1853 (2011). https://doi.org/10.1007/s11664-011-1670-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1670-5

Keywords

Navigation