Skip to main content
Log in

Viscoplastic Creep Response and Microstructure of As-Fabricated Microscale Sn-3.0Ag-0.5Cu Solder Interconnects

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The viscoplastic behavior of as-fabricated, undamaged, microscale Sn-3.0 Ag-0.5Cu (SAC305) Pb-free solder is investigated and compared with that of eutectic Sn-37Pb solder and near-eutectic Sn-3.8Ag-0.7Cu (SAC387) solder from prior studies. Creep measurements of microscale SAC305 solder shear specimens show significant piece-to-piece variability under identical loading. Orientation imaging microscopy reveals that these specimens contain only a few, highly anisotropic Sn grains across the entire joint. For the studied loads, the coarse-grained Sn microstructure has a more significant impact on the scatter in primary creep compared to that in the secondary creep. The observed lack of statistical homogeneity (microstructure) and joint-dependent mechanical behavior of microscale SAC305 joints are consistent with those observed for functional microelectronics interconnects. Compared with SAC305 joints, microscale Sn-37Pb shear specimens exhibit more homogenous behavior and microstructure with a large number of small Sn (and Pb) grains. Creep damage in the Pb-free joint is predominantly concentrated at highly misoriented Sn grain boundaries. The coarse-grained Sn microstructure recrystallizes into new grains with high misorientation angles under creep loading. In spite of the observed joint-dependent behavior, as-fabricated SAC305 is significantly more creep resistant than Sn-37Pb solder and slightly less creep resistant than near-eutectic SAC387 solder. Average model constants for primary and secondary creep of SAC305 are presented. Since the viscoplastic measurements are averaged over a wide range of grain configurations, the creep model constants represent the effective continuum behavior in an average sense. The average secondary creep behavior suggests that the dominant creep mechanism is dislocation climb assisted by dislocation pipe diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.C. Chaparala, B.D. Roggerman, J.M. Pitarresi, B.G. Sammakia, J. Jackson, G. Griffin, and T. McHugh, IEEE CPMT Trans. 28, 441 (2005).

    Google Scholar 

  2. J.G. Lee and K.N. Subramanian, J. Electron. Mater. 32, 523 (2003).

    Article  CAS  ADS  Google Scholar 

  3. H. Rhee, K. Subramanian, and A. Lee, J. Mater. Sci. Mater. Electron. 16, 169 (2005).

    Article  CAS  Google Scholar 

  4. N. E. M. I. N. P. R. http://www.nemi.org/newsroom/PR/2000/PR012400.html (Jan. 24 2000).

  5. S. Terashima, Y. Kariya, T. Hosoi, and M. Tanaka, J. Electron. Mater. 32, 1527 (2003).

    Article  CAS  ADS  Google Scholar 

  6. P.H. Haswell, Durability Assessment and Microstructural Observations of Selected Solder Alloys (University of Maryland, College Park, 2001).

  7. Q. Zhang, Isothermal Mechanical and Thermo-mechanical Durability Characterization of Selected Pb-Free Solders (University of Maryland, College Park, 2004).

  8. N.F. Enke, T.J. Kilinski, S.A. Schroeder, and J.R. Lesniak, IEEE Trans. CHMT 12, 459 (1989).

    CAS  Google Scholar 

  9. H.D. Solomon, ASME Trans. J. Electron. Packag. 111, 75 (1989).

    Article  Google Scholar 

  10. C. Andersson, P.E. Tegehall, D.R. Anderssn, G. Wetter, and J. Liu, IEEE CPMT Trans. 31, 331 (2008).

    CAS  Google Scholar 

  11. W.J. Plumbridge, C.R. Gagg, and S. Peters, J Electron. Mater. 30, 1178 (2001).

    Article  CAS  ADS  Google Scholar 

  12. R.S. Sidhu and N. Chawla, Metall. Mater. Trans. A 39A, 340 (2008).

    Article  CAS  ADS  Google Scholar 

  13. M. Kerr and N. Chawla, JOM 56, 50 (2004).

    Article  CAS  Google Scholar 

  14. M.D. Mathew, H. Yang, S. Movva, and K.L. Murty, Metall. Mater. Trans. A 36A, 99 (2005).

    Article  CAS  Google Scholar 

  15. T.O. Reinikainen, P. Marjamaki, and J.K. Kivilahti, Proceedings of the 6th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE (2005), p. 91.

  16. R.S. Sidhu, X. Deng, and N. Chawla, Metall. Mater. Trans. A 39A, 349 (2008).

    Article  CAS  ADS  Google Scholar 

  17. M.D. Mathew, S. Movva, and K.L. Murty, Creep Fract. Eng. Mater. Struct. 171, 655 (2000).

    Google Scholar 

  18. F. Ochoa, X. Deng, and N. Chawla, J. Electron. Mater. 33, 1596 (2004).

    Article  CAS  ADS  Google Scholar 

  19. T.T. Mattila, V. Vuorinen, and J.K. Kivilahti, J. Mater. Res. 19, 3214 (2004).

    Article  CAS  ADS  Google Scholar 

  20. K. Holdermann, G. Cuddalorepatta, and A. Dasgupta, Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Paper No. 67671 (Boston, MA, 2008).

  21. B. Arfaei, Y. Xing, J. Woods, J. Wolcott, P. Tumne, P. Borgesen, and E. Cotts, 58th Electronic Components and Technology Conference (2008), 459 pp.

  22. P. Borgesen, T. Bieler, L.P. Lehman, and E.J. Cotts, MRS Bull. 32, 360 (2007).

    Google Scholar 

  23. J. Sylvestre and A. Blander, J. Electron. Mater. 37, 1618 (2008).

    Article  CAS  ADS  Google Scholar 

  24. A.U. Telang and T.R. Bieler, Scripta Mater. 52, 1027 (2005).

    Article  CAS  Google Scholar 

  25. F.Q. Yang and J.C.M. Li, J. Mater. Sci. Mater. Electron. 18, 191 (2007).

    Article  CAS  Google Scholar 

  26. D.W. Henderson and J.J. Woods, J. Mater. Res. 19, 1608 (2004).

    Article  CAS  ADS  Google Scholar 

  27. S.K. Kang, P.A. Lauro, D.Y. Shih, D.W. Henderson, and K.J. Puttlitz, IBM J. Res. Dev. 49, 607 (2005).

    Article  CAS  Google Scholar 

  28. L.P. Lehman, S.N. Athavale, T.Z. Fullem, A.C. Giamis, R.K. Kinyanjui, M. Lowenstein, K. Mather, R. Patel, D. Rae, J. Wang, Y. Xing, L. Zavalij, P. Borgesen, and E.J. Cotts, J. Electron. Mater. 33, 1429 (2004).

    Article  CAS  ADS  Google Scholar 

  29. S. Park, R. Dhakal, L. Lehman, and E.J. Cotts, IEEE CPMT Trans. 30, 178 (2007).

    CAS  Google Scholar 

  30. M. Pei and J.M. Qu, IEEE CPMT Trans. 31, 712 (2008).

    CAS  Google Scholar 

  31. C. Andersson, Z. Lai, J. Liu, H. Jiang, and Y. Yu, Mater. Sci. Eng. A 394, 20 (2005).

    Article  Google Scholar 

  32. J. Cugnoni, J. Botsis, and J. Janczak-Rusch, Adv. Eng. Mater. 8, 184 (2006).

    Article  CAS  Google Scholar 

  33. S. Wiese and K.-J. Wolter, Microelectron. Reliab. 44, 1923 (2004).

    Article  CAS  Google Scholar 

  34. S. Wiese, M. Roellig, M. Mueller, and K.J. Wolter, Microelectron. Reliab. 48, 843 (2008).

    Article  CAS  Google Scholar 

  35. T. Ogawa, R. Kaga, and T. Ohsawa, J. Electron. Mater. 34, 311 (2005).

    Article  CAS  ADS  Google Scholar 

  36. K.I. Ohguchi, K. Sasaki, and M. Ishibashi, J. Electron. Mater. 35, 132 (2006).

    Article  CAS  ADS  Google Scholar 

  37. H.G. Song, J.W. Morris, and F. Hua, Mater. Trans. 43, 1847 (2002).

    Article  CAS  Google Scholar 

  38. D. Herkommer, M. Reid, and J. Punch, J. Electron. Mater. 38, 2085 (2009).

    Article  CAS  ADS  Google Scholar 

  39. H. Ma and J.C. Suhling, J. Mater. Sci. 44, 1141 (2009).

    Article  CAS  ADS  Google Scholar 

  40. G. Cuddalorepatta and A. Dasgupta, Proceedings of the ASME International Mechanical Engineering Congress and Exposition, vol. 5 (Seattle, WA, 2007), pp. 159-166.

  41. N. Iosipescu, J. Mater. 2, 537 (1967).

    Google Scholar 

  42. T. Reinkainen, M. Poech, M. Krumm, and J. Kivilahti, J Electron. Packag. Trans. ASME 120, 106 (1998).

    Article  Google Scholar 

  43. G. Cuddalorepatta, Evolution of the Microstructure and Viscoplastic Behavior of Microscale SAC305 Solder Joints as a Function of Mechanical Fatigue Damage (University of Maryland, College Park, 2010).

  44. F. Garofalo, Fundamentals of Creep and Creep-Rupture in Metals (Macmillan, New York, 1965).

  45. G. Cuddalorepatta and A. Dasgupta, Packaging, Chip-Package Interactions and Solder Materials Challenges, eds. P.A. Kohl, P.S. Ho, P. Thompson, and R. Aschenbrenner (Mater. Res. Soc. Symp. Proc. Volume 1158E, Warrendale, PA, 2009), 1158-F02-03.

  46. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2 ed. (Pergamon Press, New York, 2004)

  47. D.W. Henderson and J.J. Woods, J. Mater. Res. 19, 1608 (2004).

    Article  CAS  ADS  Google Scholar 

  48. S.K. Kang, P. Lauro, D.Y. Shih, D.W. Henderson, J. Bartelo, T. Gosselin, S.R. Cain, C. Goldsmith, K. Puttlitz, T.K. Hwang, and W.K. Choi, Mater. Trans. 45, 695 (2004).

    Article  CAS  Google Scholar 

  49. M. Mueller, S. Wiese, and K.-J. Wolter, Proceedings of 58th Electronic Components and Technology Conference (San Diego, 2009), 1027 pp.

  50. Y. Ding, C.Q. Wang, and M.Y. Li, J. Electron. Mater. 34, 1324 (2005).

    Article  CAS  ADS  Google Scholar 

  51. Y. Ding, C.Q. Wang, M.Y. Li, and H.S. Bang, Mater. Lett. 59, 697 (2005).

    Article  CAS  Google Scholar 

  52. A.U. Telang, T.R. Bieler, D.E. Mason, and K.N. Subramanian, J. Electron. Mater. 32, 1455 (2003).

    Article  CAS  ADS  Google Scholar 

  53. P.P. Jud, G. Grossmann, U. Sennhauser, and P.J. Uggowitzer, J. Electron. Mater. 34, 1206 (2005).

    Article  CAS  ADS  Google Scholar 

  54. H. Frost and M. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Oxford: Pergamon, 1982).

    Google Scholar 

  55. M. Kerr and N. Chawla, Acta Mater. 52, 4527 (2004).

    Article  CAS  Google Scholar 

  56. R.J. McCabe and M.E. Fine, J. Electron. Mater. 31, 1276 (2002).

    Article  CAS  ADS  Google Scholar 

  57. R.J. McCabe and M.E. Fine, Metall. Mater. Trans. A 33, 1531 (2002).

    Article  Google Scholar 

  58. G. Cuddalorepatta and A. Dasgupta, Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Paper No. 81171 (Orlando, FL, 2005).

  59. G. Cuddalorepatta and A. Dasgupta, Acta Mater. (2010) (accepted).

  60. P.T. Vianco, J.A. Rejent, and A.C. Kilgo, J. Electron. Mater. 33, 1473 (2004).

    Article  CAS  ADS  Google Scholar 

  61. S. Van Petegem, S. Brandstetter, H. Van Swygenhoven, and J.L. Martin, Appl. Phys. Lett. 89, 073102 (2006).

    Google Scholar 

  62. P.T. Vianco and J.A. Rejent, J. Electron. Mater. 38, 1815 (2009).

    Article  CAS  ADS  Google Scholar 

  63. J.-P. Clech, Electronic Components and Technology Conference, ed. IEEE (2005), p. 1260

Download references

Acknowledgements

This work is sponsored by the members of the CALCE Electronic Products and Systems Consortium at the University of Maryland, College Park. In addition, Ms. Cuddalorepatta would like to acknowledge Drs. Kil-Won Moon, Mark Vaudin, and Adam Creuziger from National Institute of Standards and Technology for their technical inputs on the OIM measurements, and the support of Zonta International and Surface Mount Technology Association (SMTA). The assistance of Roman Kuehner and Ermal Lamaj for the TMM specimen fabrication is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayatri Cuddalorepatta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuddalorepatta, G., Williams, M. & Dasgupta, A. Viscoplastic Creep Response and Microstructure of As-Fabricated Microscale Sn-3.0Ag-0.5Cu Solder Interconnects. J. Electron. Mater. 39, 2292–2309 (2010). https://doi.org/10.1007/s11664-010-1296-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1296-z

Keywords

Navigation