Skip to main content

Influence of Cadmium Composition on CH4–H2-Based Inductively Coupled Plasma Etching of Hg1−x Cd x Te

Abstract

In this paper, inductively coupled plasma etching of Hg1−x Cd x Te in CH4–H2-based chemistry is studied. This work is focused on the effects of substrate temperature, ion energy, and alloy composition on etch rate and surface composition. A strong influence of substrate temperature is shown. The etch rate is multiplied by more than a factor of 3 when the temperature is increased from 5°C to 35°C. A purely physical Cd removal mechanism is ruled out using x-ray photoelectron spectroscopy data from samples etched at different temperatures. Under the conditions of very low ion energy, an etching mechanism limited by the supply of active species from the plasma predicts an Hg1−x Cd x Te etch rate evolution that fits very well with our data.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    W.E. Tennant, M. Thomas, L.J. Kozlowski, W.V. Mclevige, D.D. Edwall, M. Zendian, K. Spariosu, G. Hildebrandt, V. Gil, P. Ely, M. Muzzila, A. Stoltz, and J.H. Dinan, J. Electron. Mater. 30, 590 (2001).

    Article  ADS  CAS  Google Scholar 

  2. 2.

    J. Baylet, P. Ballet, P. Castelein, F. Rothan, O. Gravrand, M. Fendler, E. Laffosse, J.P. Zanatta, J.P. Chamonal, A. Million, and G. Destefanis, J. Electron. Mater. 36, 1153 (2006).

    Article  ADS  Google Scholar 

  3. 3.

    E.P.G. Smith, E.A. Patten, P.M. Goetz, G.M. Venzor, J.A. Roth, B.Z. Nosho, J.D. Benson, A.J. Stoltz, J.B. Varesi, J.E. Jensen, S.M. Johnson, and W.A. Radford, J. Electron. Mater. 36, 1145 (2006).

    Article  ADS  Google Scholar 

  4. 4.

    E. Laffosse, J. Baylet, J.P. Chamonal, G. Destefanis, G. Cartry, and C. Cardinaud, J. Electron. Mater. 34, 740 (2005).

    Article  ADS  CAS  Google Scholar 

  5. 5.

    R.C. Keller, M. Seelmann-Eggbert, and H.J. Richter, J. Electron. Mater. 25, 1270 (1996).

    Article  ADS  CAS  Google Scholar 

  6. 6.

    J.D. Benson, A.J. Stoltz, A.W. Kaleczyc, M. Martinka, L.A. Almeida, P.R. Boyd, and J.H. Dinan, J. Electron. Mater. 31, 822 (2001).

    Article  ADS  Google Scholar 

  7. 7.

    A.J. Stoltz, M. Jaime-Vasquez, J.D. Benson, J.B. Varesi, and M. Martinka, J. Electron. Mater. 35, 1461 (2006).

    Article  ADS  CAS  Google Scholar 

  8. 8.

    A.J. Stoltz, J.D. Benson, P.R. Boyd, M. Martinka, J.B. Varesi, A.W. Kaleczyc, E.P.G. Smith, S.M. Johnson, W.A. Radford, and J.H. Dinan, J. Electron. Mater. 32, 692 (2003).

    Article  ADS  CAS  Google Scholar 

  9. 9.

    E. Belas, R. Grill, J. Franc, A. Toth, P. Hoschl, H. Sitter, and P. Moravec, J. Cryst. Growth 159, 1117 (1996).

    Article  ADS  CAS  Google Scholar 

  10. 10.

    G. Bahir and E. Finkman, J. Vac. Sci. Technol. A 7, 348 (1989).

    Article  ADS  CAS  Google Scholar 

  11. 11.

    R.C. Keller, M. Seelmann-Eggbert, and H.J. Richter, J. Electron. Mater. 24, 1155 (1995).

    Article  ADS  CAS  Google Scholar 

  12. 12.

    C.R. Eddy Jr., D. Leonhardt, V.A. Shamamian, J.R. Meyer, C.A. Hoffman, and J.E. Butler, J. Electron. Mater. 28, 347 (1999).

    Article  ADS  CAS  Google Scholar 

  13. 13.

    J. Baylet, E. Laffosse, O. Gravrand, C. Vergnaud, S. Ballerand, B. Aventurier, J.C. Deplanche, P. Ballet, P. Castelein, J.P. Chamonal, A. Millon, and G. Destefanis, J. Electron. Mater. 33, 690 (2004).

    Article  ADS  CAS  Google Scholar 

  14. 14.

    R.C. Keller, M. Seelmann-Eggbert, and H.J. Richter, Appl. Phys. Lett. 67, 3750 (1995).

    Article  ADS  CAS  Google Scholar 

  15. 15.

    J.E. Spencer, T.R. Schimert, J.H. Dinan, D. Endress, and T.R. Hayes, J. Vac. Sci. Technol. A 8, 1690 (1989).

    Article  ADS  Google Scholar 

  16. 16.

    M. Seelmann-Eggbert, A. Rar, H. Zimmermann, and P. Meisen, Mater. Res. Soc. Symp. Proc. 484, 259 (1998).

    Google Scholar 

  17. 17.

    G.J. Orloff and P.B. Smith, J. Vac. Sci. Technol. A, 12, 1252 (1994).

    Google Scholar 

  18. 18.

    J.L. Elkind and G.J. Orloff, J. Vac. Sci. Technol. A 10, 1106 (1992).

    Article  ADS  CAS  Google Scholar 

  19. 19.

    F. Boulard, J. Baylet, and C. Cardinaud, J. Vac. Sci. Technol. A 27, 855 (2009).

    Article  CAS  Google Scholar 

  20. 20.

    G.L. Hansen, J.L. Schmit, and T.N. Casselman, J. Appl. Phys. 53, 7099 (1982).

    Article  ADS  CAS  Google Scholar 

  21. 21.

    J.W. Coburn and H.F. Winters, J. Appl. Phys. 50, 3189 (1979).

    Article  ADS  CAS  Google Scholar 

  22. 22.

    W.M. Higgins, G.N. Pultz, R.G. Roy, and R.A. Landcaster, J. Vac. Sci. Technol. A 9, 271 (1989).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the French Ministry of Defense (DGA) and the Atomic Energy Commission (CEA). The authors gratefully acknowledge C. Vergnaud and F. Marmonier for technical assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Baylet.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boulard, F., Baylet, J. & Cardinaud, C. Influence of Cadmium Composition on CH4–H2-Based Inductively Coupled Plasma Etching of Hg1−x Cd x Te. Journal of Elec Materi 39, 1256–1261 (2010). https://doi.org/10.1007/s11664-010-1221-5

Download citation

Keywords

  • Inductively coupled plasma (ICP) etching
  • HgCdTe
  • CH4-based plasma
  • x-ray photoelectron spectroscopy (XPS)