Skip to main content
Log in

Plasma Passivation Etching for HgCdTe

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Inductively coupled plasmas (ICP) are the high-density plasmas of choice for the processing of HgCdTe and related compounds. Most dry plasma process works have been performed on HgCdTe for pixel delineation and the p-to-n-type conversion of HgCdTe. We would like to use the advantages of “dry” plasma processing to perform passivation etching of HgCdTe. Plasma processing promises the ability to create small vias, 2 μm or less with excellent uniformity across a wafer, good run-to-run uniformity, and good etch rate control. In this study we developed processes to controllably etch CdTe, the most common passivation material used for photovoltaic-based HgCdTe devices. We created a process based on xenon gas that allows for the slow controllable CdTe etch at only 0.035 μm/min, with smooth morphology and rounded corners to promote further processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. O’Dette, G. Tarnowski, V. Lukah, M. Krueger, and P. Lovecchip, J. Electron. Mater. 28, 821 (1999). doi:10.1007/s11664-999-0077-z

    Article  ADS  Google Scholar 

  2. E. P. G. Smith, L. T. Pham, G. M. Venzor, E. M. Norton, M. D. Newton, P. M. Goetz, V. K Randall, A. M. Gallagher, G. K. Pierce, E. A. Patten, R. A. Coussa, K. Kosai, W. A. Radford, L. M. Giegerich, J. M. Edwards, S. M. Johnson, S. T. Baur, J. A. Roth, B. Nosho, T. J. DeLuon, J. E. Jensen, and R. E. Longshore, J. Electron. Mater. 33, 509 (2004). doi:10.1007/s11664-004-0039-4

    Article  ADS  CAS  Google Scholar 

  3. J. Baylet, O. Gravrand, E. Laffosse, C. Vergnaud, S. Ballerand, B. Aventurier, J. C. Deplanche, P. Ballet, P. Castelein, J. P. Chomonal, A. Million, and G. Destefanis, J. Electron. Mater. 33, 690, (2004). doi:10.1007/s11664-004-0068-z

    Article  ADS  CAS  Google Scholar 

  4. E. P. G. Smith, E. A. Patten, P. M. Goetz, G. M. Venzor, J. A. Roth, B. Z. Nosho, J. D. Benson, A. J. Stoltz, J. B. Varesi, J. E. Jensen, S. M. Johnson, and W. A. Radford, J. Electron. Mater. 35, 1145 (2006). doi:10.1007/s11664-006-0234-6

    Article  ADS  CAS  Google Scholar 

  5. A. J. Stoltz, J.D. Benson, Mason Thomas, P.R. Boyd, M. Martinka, and J.H. Dinan, J. Electron. Mater. 31, 749 (2002) doi:10.1007/s11664-002-0231-3

    Article  ADS  CAS  Google Scholar 

  6. A. J. Stoltz, J. D. Benson, P. R. Boyd, J. B. Varesi, M. Martinka, A. W. Kaleczyc, E. P. Smith, S. M. Johnson, W. A. Radford, and J. H. Dinan, J. Electron. Mater. 32, 692, (2003). doi:10.1007/s11664-003-0054-x

    Article  ADS  CAS  Google Scholar 

  7. E. P. G. Smith, J. K. Gleason, L. T. Pham, E. A. Patten, and M. S. Welkowsky, J. Electron. Mater. 32, 816, (2003). doi:10.1007/s11664-003-0076-4

    Article  ADS  CAS  Google Scholar 

  8. R. C. Keller, H. Zimmerman, M. Seelmann-Eggebert, and H. J. Richter, J. Electron. Mater., 25, 1270 (1996) doi:10.1007/BF02655019

    Article  ADS  CAS  Google Scholar 

  9. R. C. Keller, H. Zimmerman, M. Seelmann-Eggebert, and H. J. Richter, Appl. Phys. Lett., 67, 3750 (1995) doi:10.1063/1.115371

    Article  ADS  CAS  Google Scholar 

  10. R. C. Keller, H. Zimmerman, M. Seelmann-Eggebert, and H. J. Richter, J. Electron. Mater., 26, 542 (1997) doi:10.1007/s11664-997-0191-8

    Article  ADS  CAS  Google Scholar 

  11. C. R. Eddy, Jr., D. Leonhardt, V. A. Shamamian, J. R. Meyer, C. A. Hoffman, and J. E. Butler, J. Electron. Mater., 28, 347 (1999) doi:10.1007/s11664-999-0231-7

    Article  ADS  CAS  Google Scholar 

  12. A. J. Stoltz, M. J. Sperry, J. D. Benson, J. B. Varesi, M. Martinka, L. A. Almeida, P. R. Boyd, and J. H. Dinan, J. Electron. Mater. 34, 733 (2005). doi:10.1007/s11664-005-0012-x

    Article  ADS  CAS  Google Scholar 

  13. A. J. Stoltz, M. Jaime Vasquez, J. D. Benson, J. B. Varesi, and M. Martinka, J. Electron. Mater. 35, 1461 (2006). doi:10.1007/s11664-006-0284-9

    Article  ADS  CAS  Google Scholar 

  14. E. Laffosse, J. Baylet, J. P. Chamonal, G. Destefanis, G. Cartry, and C. Cardinaud, J. Electron. Mater. 34, 740 (2005). doi:10.1007/s11664-005-0013-9

    Article  ADS  CAS  Google Scholar 

  15. A. J. Stoltz, J. D. Benson, J. Electron. Mater. 36, 1007 (2007). doi:10.1007/s11664-007-0163-z

    Article  ADS  CAS  Google Scholar 

  16. M. Elwenspoek and H. V. Jansen, Silicon Micromachining (Cambridge, United Kingdom: Cambridge University Press, 1998), PP. 213-233

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Stoltz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoltz, A.J., Benson, J.D. & Smith, P.J. Plasma Passivation Etching for HgCdTe. J. Electron. Mater. 38, 1741–1745 (2009). https://doi.org/10.1007/s11664-009-0833-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0833-0

Keywords

Navigation