Skip to main content

Advertisement

Log in

A langmuir probe investigation of electron cyclotron resonance argon-hydrogen plasmas

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report on the physical attributes of an argon-hydrogen plasma and the effects that induced changes in these attributes have on the physical and electrical characteristics of the plasma itself. Changes in the plasma conditions of these argon-hydrogen plasmas due to variations in microwave power, DC biasing, gas concentrations, and pressures were measured. We determined that increasing the hydrogen flow increases the sheath potential of the plasma, thereby increasing the arrival energy of ions at the surface of a sample placed in the plasma. Even with the decrease in plasma density from an increase in hydrogen input flow, we found the ion current is maintained in the predominately hydrogen plasma and is likely compensated by the high velocity and long mean free path of the hydrogen. We also observed that increasing total pressure also results in hydrogen ions dominating the total number of ions reaching the Langmuir probe and therefore the sample during processing. Last, a model based on the ion/electron energy ratio was developed and used to determine the relative ion concentrations of hydrogen and argon ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. O’Dette, G. Tarnowski, V. Lukah, M. Krueger, and P. Lovecchip, J. Electron. Mater. 28, 821 (1999).

    CAS  Google Scholar 

  2. A.J. Stoltz, J.D. Benson, Mason Thomas, P.R. Boyd, M. Martinka, and J.H. Dinan, J. Electron. Mater. 31, 749 (2002).

    CAS  Google Scholar 

  3. A.J. Stoltz, J.D. Benson, P.R. Boyd, J.B. Varesi, M. Martinka, A.W. Kaleczyc, E.P. Smith, S.M. Johnson, W.A. Radford, and J.H. Dinan, J. Electron. Mater. 32, 692 (2003).

    CAS  Google Scholar 

  4. E.P.G. Smith, J.K. Gleason, L.T. Pham, E.A. Patten, and M.S. Welkowsky, J. Electron. Mater. 32, 816 (2003).

    CAS  Google Scholar 

  5. E.P.G. Smith et al., J. Electron. Mater. 33, 509 (2004).

    CAS  Google Scholar 

  6. J. Baylet et al., J. Electron. Mater. 33, 690 (2004).

    CAS  Google Scholar 

  7. R.C. Keller, H. Zimmerman, M. Seelmann-Eggebert, and H.J. Richter, J. Electron. Mater. 25, 1270 (1996).

    CAS  Google Scholar 

  8. R.C. Keller, H. Zimmerman, M. Seelmann-Eggebert, and H.J. Richter, J. Electron. Mater. 26, 542 (1997).

    CAS  Google Scholar 

  9. E. Neyts, M. Uan, A. Bogaerts, and R. Gijbels, J. Appl. Phys. 93, 5025 (2003).

    Article  CAS  Google Scholar 

  10. M. Elwenspoek and H.V. Jansen, Silicon Micromachining (Cambridge, United Kingdom: Cambridge University Press, 1998), pp. 212–233.

    Google Scholar 

  11. Michael A. Lieberman and Allan J. Lichtenberg, in Principles of Plasma Discharges and Materials Processing (New York: John Wiley & Sons, Inc., 2004), pp. 154–190.

    Google Scholar 

  12. Francis F. Chen and Jane P. Chang, Plasma Diagnostics (New York: Kluwer Academic/Plenum Publishers, 2003), pp. 75–97.

    Google Scholar 

  13. James E. Stevens, Electron Cyclotron Resonance Plasma Sources in High Density Plasma Sources, ed. Oleg A. Popov (Park Ridge, NJ: Noyes Publications, 2005), pp. 312–379.

    Google Scholar 

  14. Michael A. Lieberman and Allan J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (New York: John Wiley & Sons, Inc., 2004), pp. 412–449.

    Google Scholar 

  15. J.D. Benson, A.J. Stoltz, J.B. Varesi, L.A. Almeida, E.P.G. Smith, S.M. Johnson, M. Martinka, A.W. Kaleczyc, J.K. Markuna, P.R. Boyd, and J.H. Dinan, J. Electron. Mater. 34, 726 (2005).

    CAS  Google Scholar 

  16. K. Suzuki, K. Ninomiya, S. Nishimatsu, and S. Okudaira, J. Vac. Sci. Technol. B, 3, 1025 (1985).

    Article  CAS  Google Scholar 

  17. C.R. Eddy, Jr., D. Leonhardt, S.R. Douglass, V.A. Shamamian, B.D. Thoms, and J.E. Butler, J. Vac. Sci. Technol. A 17, 780 (1999).

    Article  CAS  Google Scholar 

  18. Seongsoo Jang and Wonjong Lee, J. Vac. Sci. Technol. A 19, 2335 (2001).

    Article  CAS  Google Scholar 

  19. B. Chapman, Glow Discharge Process (New York: John Wiley & Sons, 1980), pp. 49–76.

    Google Scholar 

  20. John B.O. Caughman II and Willam M. Holber, J. Vac. Sci. Technol. A 9, 3113 (1991).

    Article  CAS  Google Scholar 

  21. K. Shirai, T. Iizuka, and S. Gonda, Jpn. J. Appl. Phys. 28, 897 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoltz, A.J., Sperry, M.J., Benson, J.D. et al. A langmuir probe investigation of electron cyclotron resonance argon-hydrogen plasmas. J. Electron. Mater. 34, 733–739 (2005). https://doi.org/10.1007/s11664-005-0012-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0012-x

Key words

Navigation