Skip to main content
Log in

Extended X-ray Absorption Fine Structure Investigation of Arsenic in HgCdTe: the Effect of the Activation Anneal

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Extended x-ray absorption fine structure (EXAFS) investigation was carried out on two arsenic-doped HgCdTe samples. Arsenic incorporation was achieved with a non-conventional radiofrequency plasma source in a molecular beam epitaxy reactor. Both samples were taken from the same epitaxial run. One of these samples followed a 400°C activation anneal under Hg pressure. EXAFS was used here to probe the local environment around arsenic, and the experimental data were fit through first-principle calculations to extract a quantitative description of the arsenic site transfer upon annealing. Arsenic neighbors are described in terms of chemical nature, numbers and distances. Arsenic was found to be involved mostly in non-crystalline structures, either an As2Te3 glass or an AsHg compact structure. The effect of annealing is to break down the chalcogenide glass, thus favoring the compact AsHg structure. EXAFS results were compared to 77 K Hall-effect measurements, and a very good correlation was found. These findings were compared to the commonly admitted scenario for arsenic site incorporation and transfer upon annealing and provided a new picture and the first experimental evidence of the site transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Baylet, P. Ballet, P. Castelein, F. Rothan, O. Gravrand, M. Fendler, E. Lafosse, J.P. Zanatta, J.P. Chamonal, A. Million and G. Destefanis, J. Electron. Mater. 35, 1153 (2006). doi:10.1007/s11664-006-0235-5.

    Article  ADS  CAS  Google Scholar 

  2. H.F. Schaake, M.A. Kinch, D. Chandra, F. Aqariden, P.K. Liao, D.F. Weirauch, C.F. Wan, R.E. Scritchfield, W.W. Sullivan, J.T. Teherani and H.D. Shih, J. Electron. Mater. 37, 1401 (2008).

    Article  ADS  CAS  Google Scholar 

  3. J. Rothman, G. Perrays, P. Ballet, L. Mollard, S. Gout and J.P. Chamonal, J. Electron. Mater. 37, 1303 (2008). doi:10.1007/s11664-008-0449-9.

    Article  ADS  CAS  Google Scholar 

  4. J.D. Beck, C.F. Wan, M.A. Kinch, J.E. Robinson, P. Mitra, R. Scritchfield, F .Ma, and J. Campbell, Proc. SPIE 5564, 44 (2004). doi:10.1117/12.565142.

    Article  ADS  Google Scholar 

  5. M. Zandian, A.C. Chen, D.D. Edwall, J.G. Pasko, and J.M. Arias, Appl. Phys. Lett. 71, 2815 (1997). doi:10.1063/1.120144.

    Article  ADS  CAS  Google Scholar 

  6. A.C. Chen, M. Zandian, D.D. Edwall, R.E. De Wames, P.S. Wijewarnasuriya, J.M. Arias, S. Sivanathan, M. Berding, and A. Sher, J. Electron. Mater. 27, 595 (1998). doi:10.1007/s11664-998-0021-7.

    Article  ADS  CAS  Google Scholar 

  7. M.A. Berding and A Sher, Appl. Phys. Lett. 74, 685 (1999). doi:10.1063/1.122987.

    Article  ADS  CAS  Google Scholar 

  8. H.R. Vydyanath, Semiconduct. Sci. Technol. 5, S213 (1990). doi:10.1088/0268-1242/5/3S/047.

    Article  ADS  CAS  Google Scholar 

  9. H.F. Schaake, J. Electron. Mater. 30, 789 (2001). doi:10.1007/BF02665874.

    Article  ADS  CAS  Google Scholar 

  10. D. Chandra, H.F. Schaake, M.A. Kinch, F. Aguariden, C.F. Wan, D.F. Weirauch, and H.D. Shih, J. Electron. Mater. 31, 715 (2002). doi:10.1007/s11664-002-0225-1.

    Article  ADS  CAS  Google Scholar 

  11. D. Shaw, Semicond. Sci. Technol. 15, 911 (2000). doi:10.1088/0268-1242/15/9/307.

    Article  ADS  CAS  Google Scholar 

  12. J.E. Hails, S.J.C. Irvine, D.J. Cole-Hamilton, J. Giess, M.R. Houlton, and A. Graham, J. Electron. Mater. 37, 1291 (2008). doi:10.1007/s11664-008-0452-1.

    Article  ADS  CAS  Google Scholar 

  13. S. Plissard, G. Giusti, B. Polge, P. Ballet, A. Million, X. Biquard, E. Molva, J.P. Barnes, and P. Holliger, J. Electron. Mater. 36, 919 (2007). doi:10.1007/s11664-007-0133-5.

    Article  ADS  CAS  Google Scholar 

  14. A. Filipponi, M. Borowski, D. T. Bowron, S. Ansell, A. Cicco, S. De Panfilis, and J.-P. Itiè, Rev. Sci. Instrum. 71, 2422 (2000). doi:10.1063/1.1150631.

    Article  ADS  CAS  Google Scholar 

  15. B. Ravel and M. Newville, J. Synchrotron Radiat. 12(4): 537 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. J.J. Rehr and R.C. Albers, Rev. Mod. Phys. 72, 621 (2000). doi:10.1103/RevModPhys.72.621.

    Article  ADS  CAS  Google Scholar 

  17. Q. Ma, D. Raoux, and S. Bénazeth, Phys. Rev. B 48, p16332 (1993). doi:10.1103/PhysRevB.48.16332.

    Article  ADS  CAS  Google Scholar 

  18. M. Dongol, T. Gerber, M. Hafiz, M. Abou-Zied, and A.F. Elhady, J. Phys: Condens. Matter 18, 6213 (2006). doi:10.1088/0953-8984/18/27/005.

    Article  ADS  CAS  Google Scholar 

  19. L.Z. Sun, X.S. Chen, Y.L. Sun, X.H. Zhou, Z.J. Quan, H. Duan, and W. Lu, Phys. Rev. B 71, 193203 (2005). doi:10.1103/PhysRevB.71.193203.

    Article  ADS  CAS  Google Scholar 

  20. L.A. Almeida, J. Electron. Mater. 31, 660 (2002). doi:10.1007/s11664-002-0215-3.

    Article  ADS  CAS  Google Scholar 

  21. D.E. Lacklison and G. Duggan, J. Appl. Phys. 55, 4257 (1984). doi:10.1063/1.333028.

    Article  ADS  CAS  Google Scholar 

  22. Y. Schacham-Diamond and I. Kidron, J. Appl. Phys. 56, 1104 (1984). doi:10.1063/1.334081.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ballet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballet, P., Polge, B., Biquard, X. et al. Extended X-ray Absorption Fine Structure Investigation of Arsenic in HgCdTe: the Effect of the Activation Anneal. J. Electron. Mater. 38, 1726–1732 (2009). https://doi.org/10.1007/s11664-009-0810-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0810-7

Key words

Navigation