Skip to main content
Log in

Strained and Unstrained Layer Superlattices for Infrared Detection

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Strained HgTe/CdZnTe or InAs/GaInSb, and essentially unstrained HgTe/CdTe superlattices (SLs), are possible materials systems for implementation in future-generation infrared imaging systems. In addition to cutoff wavelengths spanning the infrared spectrum, they offer degrees of freedom in their design (e.g., layer thicknesses, alloy compositions, and number of layers in one superlattice period) that permit the optimization of an infrared detector’s figures of merit such as detectivity through the tuning of material properties such as recombination lifetimes and optical absorption. This paper provides a brief overview of the anticipated advantages of the SLs over HgCdTe alloy-based infrared photon detector technology and the relative merits of the II–VI and III–V semiconductor-based SLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.N. Schulman and T.C. McGill, Appl. Phys. Lett. 34, 663 (1979). doi:10.1063/1.90629

    Article  ADS  CAS  Google Scholar 

  2. J.P. Faurie, A. Million and J. Piaguet, Appl. Phys. Lett. 41, 713 (1982). doi:10.1063/1.93644

    Article  ADS  CAS  Google Scholar 

  3. D.L. Smith, T.C. McGill and J.N. Schulman, Appl. Phys. Lett 43, 180 (1983). doi:10.1063/1.94272

    Article  ADS  CAS  Google Scholar 

  4. T.H. Myers, J.R. Meyer, C.A. Hoffman, L.R. Ram Mohan, Appl. Phys. Lett. 61, 1814 (1992). doi:10.1063/1.108383

    Article  ADS  CAS  Google Scholar 

  5. J. Reno and J.P. Faurie, Appl. Phys. Lett. 49, 409 (1986). doi:10.1063/1.97603

    Article  ADS  CAS  Google Scholar 

  6. C.A. Hoffman, J.R. Meyer, R.J. Bartoli, X. Chu, J.P. Faurie, L.R. Ram-Mohan and H. Xie, J. Vac. Sci. Technol. A 8, 1200 (1990). doi:10.1116/1.576945

    Article  ADS  CAS  Google Scholar 

  7. X. Chu, S. Sivananthan and J.P. Faurie, Superlattices and Microstructure 4, 173 (1988). doi:10.1016/0749-6036(88)90031-6

    Article  ADS  CAS  Google Scholar 

  8. K.A. Harris, T.H. Myers, R.W. Yanka, L.M. Mohnkern and N. Otsuka, J. Vac. Sci. Technol. B 9, 1982 (1991). doi:10.1116/1.585411

    Article  Google Scholar 

  9. C.R. Becker, V. Latussek, A. Pfeuffer-Jeschke, G. Landwehr, L. W. Molenkamp, Phys. Rev. B 62, 10353 (2000). doi:10.1103/PhysRevB.62.10353

    Article  ADS  CAS  Google Scholar 

  10. N.P. Ong, G. Kote and J.T. Cheung, Phys. Rev. B 28, 2289 (1983). doi:10.1103/PhysRevB.28.2289

    Article  ADS  CAS  Google Scholar 

  11. P.P. Chow and D. Johnson, J. Vacuum Sci. & Technol. A 3, 67 (1985). doi:10.1116/1.573247

    Article  ADS  CAS  Google Scholar 

  12. K.A. Harris, S. Hwang, D. K. Blanks, J. W. Cook, Jr., J. F. Schetzina, N. Otsuka, J. P. Baukus and A. T. Hunter, Appl. Phys. Lett. 48, 396 (1986). doi:10.1063/1.96563

    Article  ADS  CAS  Google Scholar 

  13. M.A. Reed, R.J. Koestner and M.W. Goodwin Appl. Phys. Lett. 49, 1293 (1986).

    Article  ADS  CAS  Google Scholar 

  14. L.M. Williams, P.-Y. Lu, S. N. G. Chu and C.-H. Wang, J. Appl. Phys. 62, 295 (1987). doi:10.1063/1.339144

    Article  ADS  CAS  Google Scholar 

  15. J.M. Ballingall, D. J. Leopold, M. L. Wroge, D. J. Peterman, B. J. Morris and J. G. Broerman, Appl. Phys. Lett. 49, 871 (1986). doi:10.1063/1.97520

    Article  ADS  CAS  Google Scholar 

  16. O. Wu, Proceedings of the Third International Conference on Superlattices, Microstructures and Microdevices, Chicago (1987), p. 50.

  17. C.H. Grein, R.J. Radtke and H. Ehrenreich, SPIE 3794, 36 (1999). doi:10.1117/12.366727

    Article  ADS  CAS  Google Scholar 

  18. C.H. Grein, H. Jung, R. Singh and M.E. Flatte, J. Electron. Mater 34, 905 (2005). doi:10.1007/s11664-005-0040-6

    Article  ADS  CAS  Google Scholar 

  19. H.S. Jung, P. Boieriu and C. H. Grein, J. Electron. Mater. 35, 1341 (2006). doi:10.1007/s11664-006-0265-z

    Article  ADS  CAS  Google Scholar 

  20. J.R. Meyer, D.J. Arnold, C.A. Hoffman, F.J. Bartoli and L.R. Ram-Mohan, J. Vacuum Sci. & Technol. B 9, 1818 (1991). doi:10.1116/1.585806

    Article  ADS  CAS  Google Scholar 

  21. G.A. Sai-Halasz, R. Tsu, and L. Esaki, Appl. Phys. Lett. 30, 651 (1977). doi:10.1063/1.89273

    Article  ADS  CAS  Google Scholar 

  22. D.L. Smith and C. Mailhiot, J. Appl. Phys. 62, 2545 (1987). doi:10.1063/1.339468

    Article  ADS  CAS  Google Scholar 

  23. R.H. Miles, D.H. Chow, J.N. Schulman and T.C. McGill, Appl. Phys. Lett. 57, 801 (1990). doi:10.1063/1.103425

    Article  ADS  CAS  Google Scholar 

  24. C.H. Grein, P.M. Young, and H. Ehrenreich, Appl. Phys. Lett. 61, 2905 (1992). doi:10.1063/1.108480

    Article  ADS  CAS  Google Scholar 

  25. E.R. Youngdale, J.R. Meyer, C.A. Hoffman, F.J. Bartoli, C.H. Grein, P.M. Young, H. Ehrenreich, R.H. Miles, and D.H. Chow, Appl. Phys. Lett. 64, 3160 (1994). doi:10.1063/1.111325

    Article  ADS  CAS  Google Scholar 

  26. H.J. Haugan, S. Elhamri, G.J. Brown and W.C. Mitchel, J. Appl. Phys. 104, 73111 (2008). doi:10.1063/1.2993748

    Article  CAS  Google Scholar 

  27. J. W. Little, S. P. Svensson, W. A. Beck, A. C. Goldberg, S. W. Kennerly, T. Hongsmatip, M. Winn, and P. Uppal, J. Appl. Phys. 101, 044514 (2007). doi:10.1063/1.2512054

    Article  ADS  CAS  Google Scholar 

  28. J.V. Li, C.J. Hill, J. Mumolo, S. Gunapala, S. Mou and S.L. Chuang, Appl. Phys. Lett. 93, 63505 (2008). doi:10.1063/1.2967456

    Article  ADS  CAS  Google Scholar 

  29. I. Vurgaftman, E.H. Aifer, C.L. Canedy, J.G. Tischler, J.R. Meyer, J.H. Warner, E.M. Jackson, G. Hildebrandt and G.J. Sullivan, Appl. Phys. Lett. 89, 21114 (2006). doi:10.1063/1.2356697

    Article  ADS  CAS  Google Scholar 

  30. B.M. Nguyen, D. Hoffman, P.Y. Delaunay, E.K.W. Huang, M. Razeghi and J. Pellegrino, Appl. Phys. Lett. 93, 63502 (2008). doi:10.1063/1.2967880

    Article  ADS  CAS  Google Scholar 

  31. G.J. Sullivan, A. Ikhlassi, J. Bergman, R.E. DeWames, J.R. Waldrop, C. Grein, M. Flatte, K. Mahalingam, H. Yang, M. Zhong and M. Weimer, J. Vacuum Sci. & Technol. B 23, 1144 (2005). doi:10.1116/1.1928238

    Article  CAS  Google Scholar 

  32. E. Plis, H.S. Kim, G. Bishop, S. Krishna, K. Banerjee and S. Ghosh, Appl. Phys. Lett. 93, 23507 (2008).) doi:10.1063/1.2990049

    Article  ADS  CAS  Google Scholar 

  33. K.A. Harris, R.W. Yanka, L.M. Mohnkern, A.R. Reisinger, T.H. Myers, Z. Yang, Z. Yu, S. Hwang, J.F. Schetzina, J. Vac. Sci. Technol. B 10, 1574 (1992). doi:10.1116/1.586251

    Article  CAS  Google Scholar 

  34. Andrew Hood, Darin Hoffman, Binh-Minh Nguyen, Pierre-Yves Delaunay, Erick Michel and Manijeh Razeghi, Appl. Phys. Lett. 89, 093506 (2006). doi:10.1063/1.2345020

    Article  ADS  CAS  Google Scholar 

  35. C.H. Grein, P. M. Young, M. E. Flatte and H. Ehrenreich, J. Appl. Phys. 78, 7143 (1995). doi:10.1063/1.360422

    Article  ADS  CAS  Google Scholar 

  36. Mikhail V. Kisin, Sergey D. Suchalkin, Gregory Belenky, John D. Bruno and Richard Tober, Appl. Phys. Lett. 85, 4310 (2004). doi:10.1063/1.1814432

    Article  ADS  CAS  Google Scholar 

  37. C.H. Grein, P.M. Young, H. Ehrenreich and T.C. McGill, J. Electronic Materials 22, 1093 (1993). doi:10.1007/BF02817530

    Article  ADS  CAS  Google Scholar 

  38. C.H. Grein, P.M. Young and H. Ehrenreich, J. Appl. Phys. 76, 1940 (1994). doi:10.1063/1.357682

    Article  ADS  CAS  Google Scholar 

  39. C.H. Grein, H. Cruz, M.E. Flatté and H. Ehrenreich, Appl. Phys. Lett. 65, 2530 (1994). doi:10.1063/1.112626

    Article  ADS  CAS  Google Scholar 

  40. M.E. Flatté, C.H. Grein, H. Ehrenreich, R.H. Miles and H. Cruz, J. Appl. Phys. 78, 4552 (1995). doi:10.1063/1.359798

    Article  ADS  Google Scholar 

  41. C.H. Grein, W.H. Lau, T.L. Harbert and M.E. Flatte, SPIE 4795, 39 (2002). doi:10.1117/12.452265

    Article  ADS  Google Scholar 

  42. M.A. Kinch, J. Electron. Mater. 29, 809 (2000). doi:10.1007/s11664-000-0229-7

    Article  ADS  CAS  Google Scholar 

  43. G.L. Hansen, J.L. Schmidt, T.N. Casselman, J. Appl. Phys. 53, 7099 (1982). doi:10.1063/1.330018

    Article  ADS  CAS  Google Scholar 

  44. N.F. Johnson, H. Ehrenreich, P.M. Hui, and P.M. Young, Phys. Rev. B 41, 3655 (1990). doi:10.1103/PhysRevB.41.3655

    Article  ADS  CAS  Google Scholar 

  45. G.L. Hansen and J. L. Schmit, J. Appl. Phys. 54, 1639 (1983). doi:10.1063/1.332153

    Article  ADS  CAS  Google Scholar 

  46. J.S. Blakemore, Semiconductor Statistics (New York: Dover Publications, 1987), p. 221

  47. W. van Roosbroeck and W. Shockley, Phys. Rev. B 94, 1558 (1954). doi:10.1103/PhysRev.94.1558

    Article  Google Scholar 

  48. W.P. Dumke, Phys. Rev. 105, 139 (1957). doi:10.1103/PhysRev.105.139

    Article  ADS  CAS  Google Scholar 

  49. C.H. Grein, H. Ehrenreich and E. Runge, SPIE Vol. 2999, 11 (1997). doi:10.1117/12.271179

    Article  ADS  CAS  Google Scholar 

  50. S.E. Schacham and E. Finkman, J. Appl. Phys. 57, 2001 (1985). doi:10.1063/1.334386

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Grein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grein, C.H., Garland, J. & Flatté, M.E. Strained and Unstrained Layer Superlattices for Infrared Detection. J. Electron. Mater. 38, 1800–1804 (2009). https://doi.org/10.1007/s11664-009-0757-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0757-8

Keywords

Navigation