Skip to main content
Log in

Comparison of normal and inverted band structure HgTe/CdTe superlattices for very long wavelength infrared detectors

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The type III band alignment of HgTe/CdTe superlattices leads to the interesting possibility of achieving very long wavelength infrared (VLWIR) (15 µm and longer) cutoff wavelengths with either normal (HgTe layer thickness less than about 70 Å for CdTe layer thickness of 50 Å) or inverted (HgTe thickness greater than about 70 Å) band structures. The inverted band structure superlattices promise even greater cutoff wavelength control than the normal band structure ones. However, the electronic band gaps of inverted band structure superlattices are substantially less than their optical band gaps, leading to large thermal carrier concentrations even at temperature as low as 40 K. These high carrier concentrations in turn give rise to more rapid Auger recombination than normal band structure superlattices with the same cutoff wavelengths. We conclude that the highest performance is expected from VLWIR HgTe/CdTe superlattice-based detectors with normal band structure absorber layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Schulman and T.C. McGill, Appl. Phys. Lett. 34, 663 (1979).

    Article  CAS  Google Scholar 

  2. D.L. Smith, T.C. McGill, and J.N. Schulman, Appl. Phys. Lett. 43, 180 (1983).

    Article  CAS  Google Scholar 

  3. J.P. Faurie, A. Million, and J. Piaguet, Appl. Phys. Lett. 41, 713 (1982).

    Article  CAS  Google Scholar 

  4. J. Reno and J.P. Faurie, Appl. Phys. Lett. 49, 409 (1986).

    Article  CAS  Google Scholar 

  5. X. Chu, S. Sivananthan, and J.P. Faurie, Superlattices Microstruct. 4, 173 (1988).

    Article  CAS  Google Scholar 

  6. K.A. Harris, T.H. Myers, R.W. Yanka, L.M. Mohnkern, and N. Otsuka, J. Vac. Sci. Technol. B 9, 1982 (1991).

    Article  Google Scholar 

  7. C.A. Hoffman, J.R. Meyer, R.J. Bartoli, X. Chu, J.P. Faurie, L.R. Ram-Mohan, and H. Xie, J. Vac. Sci. Technol. A 8, 1200 (1990).

    Article  CAS  Google Scholar 

  8. C.R. Becker, V. Latussek, G. Landwehr, and L.W. Molenkamp, Phys. Rev. B 68, 035202 (2003).

    Article  Google Scholar 

  9. J. Reno, R. Sporken, Y.J. Kim, C. Hsu, and J.P. Faurie, Appl. Phys. Lett. 51, 1545 (1987).

    Article  CAS  Google Scholar 

  10. R.H. Hartley, M.A. Folkard, D. Carr, P.J. Orders, D. Rees, I.K. Varga, V. Kumar, G. Shen, T.A. Steele, H. Buskes, and J.B. Lee, J. Cryst. Growth 117, 166 (1992).

    Article  CAS  Google Scholar 

  11. C.H. Grein, P.M. Young, M.E. Flatté, and H. Ehrenreich, J. Appl. Phys. 78, 7143 (2005).

    Article  Google Scholar 

  12. M.E. Flatté, C.H. Grein, T.C. Hasenberg, S.A. Anson, D.-J. Jang, J.T. Olesberg, and T. Boggess, Phys. Rev. B. 59, 5745 (1999).

    Article  Google Scholar 

  13. S. Brand and R.A. Abram, J. Phys. C 17, L571 (1984).

  14. W. van Roosbroeck and W. Schockley, Phys. Rev. 94, 1558 (1954).

    Article  Google Scholar 

  15. H.S. Jung, C.H. Grein, and C.R. Becker, Proc. SPIE 5209, 90 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grein, C.H., Jung, H., Singh, R. et al. Comparison of normal and inverted band structure HgTe/CdTe superlattices for very long wavelength infrared detectors. J. Electron. Mater. 34, 905–908 (2005). https://doi.org/10.1007/s11664-005-0040-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0040-6

Key words

Navigation