Skip to main content
Log in

Constraining Effects of Lead-Free Solder Joints During Stress Relaxation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Reliability and quality control of microelectronics depend on a detailed understanding of the complex thermomechanical properties of miniaturized lead-free solder joints. With the continuous reduction in size of modern electronic devices, including also the size of the solder joints themselves, mechanical constraint effects may become of importance for the reliability of the joints. In the present study stress relaxation tests in tensile mode were performed on model solder joints consisting of eutectic Sn-3.5Ag solder between Cu substrates. The gap size of the joints was varied between 750 μm and 150 μm in order to investigate the variation of the mechanical properties as a function of the gap size. As it turned out, stress relaxation was dramatically reduced when the solder gaps became smaller due to constraint effects already well known from earlier measurements of the tensile strength. By employing a traditional creep model, the stress exponents and the activation energies were derived and compared with available data in the literature. The consequences of these constraint effects for the case of thermomechanical fatigue are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.J. Plumbridge, R.J. Matela, A. Westwater, Structural Integrity and Reliability in Electronics, (Kluwer Academic, Dordrecht, 2003).

    Google Scholar 

  2. P. Zimprich, U. Saeed, A. Betzwar-Kotas, B. Weiss, H. Ipser. J. Electron. Mater. 37, 1 (2008) doi:10.1007/s11664-007-0278-2

    Article  CAS  Google Scholar 

  3. P. Zimprich, A. Betzwar-Kotas, G. Khatibi, B. Weiss, H. Ipser. J. Mater. Sci. Mater. Electron. 19, 383 (2008) doi:10.1007/s10854-007-9349-7

    Article  CAS  Google Scholar 

  4. E. Orowan, J.F. Nye, W.J. Cairns. MOS Armament Res. Dept. Rept. 35, 16 (1945)

    Google Scholar 

  5. H.J. Saxton, A.J. West, C.R. Barrett, Metall. Trans. 2, 999 (1971) doi:10.1007/BF02664231

    Article  CAS  Google Scholar 

  6. A.J. West, H.J. Saxton, C.R. Barrett, Metall. Trans. 2, 1009 (1971) doi:10.1007/BF02664232

    Article  CAS  Google Scholar 

  7. H.J. Saxton, A.J. West, C.R. Barrett, Metall. Trans. 2, 1019 (1971) doi:10.1007/BF02664233

    Article  CAS  Google Scholar 

  8. W.J. Plumbridge, Solder. Surf. Mt. Technol. 16(2), 13 (2004) doi:10.1108/09540910410537291

    Article  CAS  Google Scholar 

  9. K·N. Subramanian, J. Mater. Sci. Mater. Electron. 18, 237 (2007) doi:10.1007/s10854-006-9015-5

    Article  CAS  Google Scholar 

  10. S.G. Jadhav, T.R. Bieler, K·N. Subramanian, J.P. Lucas, J. Electron. Mater. 30, 1197 (2001) doi:10.1007/s11664-001-0150-8

    Article  ADS  CAS  Google Scholar 

  11. E.W. Hart, Stress Relaxation Testing (ASTM, Philadelphia, PA, 1975).

    Google Scholar 

  12. G.S. Murty, J. Mater. Sci. 8, 611 (1973) doi:10.1007/BF00550469

    Article  CAS  ADS  Google Scholar 

  13. E.W. Hare, R.G. Stang, J. Electron. Mater. 24, 1473 (1995) doi:10.1007/BF02655466

    Article  ADS  CAS  Google Scholar 

  14. M. Rhee, K·N. Subramanian, J. Electron. Mater. 32, 1310 (2003) doi:10.1007/s11664-003-0028-z

    Article  ADS  CAS  Google Scholar 

  15. F. Guo, J.P. Lucas, K·N. Subramanian, J. Mater. Sci. Mater. Electron. 12, 27 (2001) doi:10.1023/A:1011264527894

    Article  CAS  Google Scholar 

  16. Y.-L. Shen, N. Chawla, E.S. Ege, X. Deng, Acta Mater. 53, 2633 (2005) doi:10.1016/j.actamat.2005.02.024

    Article  CAS  Google Scholar 

  17. A. Ziering (Diploma thesis, University of Vienna, 2008).

  18. U. Saeed (Ph.D. thesis, University of Vienna, 2007).

  19. H. Mavori, J. Chin, S. Vaynman, B. Moran, L. Leer, M. Fine, J. Electron. Mater. 26, 983 (1997) doi:10.1007/s11664-997-0252-z

    Article  Google Scholar 

  20. M.D. Mathews, S. Movva, H. Yang, and K.L. Murty, Creep Behaviours of Advanced Materials for the 21 st Century, ed., R.S. Mishra, A.K. Mukherjee, K.L. Murty (TMS, Warrendale, PA, 1999).

    Google Scholar 

  21. W.J. Plumbridge, C.R. Gagg, S. Peters, J. Electron. Mater. 30, 1178 (2001) doi:10.1007/s11664-001-0147-3

    Article  ADS  CAS  Google Scholar 

  22. M.L. Huang, L. Wang, C.M.L. Wu, J. Mater. Res. 17, 2897 (2002) doi:10.1557/JMR.2002.0420

    Article  ADS  CAS  Google Scholar 

  23. R. Darveaus, K. Banerji, IEEE Trans. Comp. Hybrids Manuf. Technol. 15, 1013 (1992) doi:10.1109/33.206925

    Article  Google Scholar 

  24. J.H. Lau, S·H. Plan, C. Chang, J. Electron Packaging 124, 69 (2002) doi:10.1115/1.1400995

    Article  CAS  Google Scholar 

  25. H.G. Song, J.W. Morris, F. Hua, Mater. Trans. 43, 1847 (2002) doi:10.2320/matertrans.43.1847

    Article  CAS  Google Scholar 

  26. S. Wiese, F. Feustel, E. Meusel, Sensors Actuators A 99, 188 (2002) doi:10.1016/S0924-4247(01)00880-9

    Article  Google Scholar 

  27. M. Kerr, M. Chawla, Acta Mater. 52, 4527 (2004) doi:10.1016/j.actamat.2004.06.010

    Article  CAS  Google Scholar 

  28. R.J. McCabe, M.E. Fine, Metall. Mater. Trans. A 33, 1531 (2002) doi:10.1007/s11661-002-0075-8

    Article  Google Scholar 

  29. E. Breen, J. Weertman, Trans. Metall. Soc. AIME 203, 1230 (1955)

    Google Scholar 

  30. S·H. Suh, J.B. Cohen, J. Weertman. Metall. Mater. Trans. A 14, 117 (1983)

    Article  ADS  CAS  Google Scholar 

  31. H. Luthy, A.K. Miller, O.D. Sherby, Acta Metall. 28, 169 (1980) doi:10.1016/0001-6160(80)90066-8

    Article  CAS  Google Scholar 

  32. R.W. Evan, B. Wilshire, Introduction to Creep (Institute of Materials, London, 1993), p. 46

    Google Scholar 

  33. S. Choi, J.G. Lee, F. Guo, T.R. Bieler, K·N. Subramanian, J.P. Lucas, JOM 53, 22 (2001) doi:10.1007/s11837-001-0098-4

    Article  CAS  Google Scholar 

  34. K.L. Murty, H. Yang, P. Deane, and P. Magill, Advanced Electronic Packaging, EEP-Vol. 19-1. (ASME, Philadelphia, PA, 1997).

  35. M.D. Mathew, S. Movva, K.L. Murty, Key Eng. Mater. 171–174, 655 (2000)

    Article  Google Scholar 

  36. S. Suresh, Fatigue of Materials (2 nd ed.) (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  37. T. Reinkanen, J. Kivilahti, Metall. Mater. Trans. A 30, 123 (1999) doi:10.1007/s11661-999-0200-z

    Article  Google Scholar 

  38. V·I. Igoshev, J.I. Kleiman, J. Electron. Mater. 29, 224 (2000)

    ADS  Google Scholar 

  39. P. Adeva, G. Caruana, O.A. Ruano, M. Torralba, Mater. Sci. Eng. A 194, 17 (1995) doi:10.1016/0921-5093(94)09654-6

    Article  Google Scholar 

  40. D.K. Joo, J. Yu, S·W. Shin, J. Electron. Mater. 32, 541 (2003) doi:10.1007/s11664-003-0140-0

    Article  ADS  CAS  Google Scholar 

  41. H. Yang, P. Deane, P. Magill, and K.L. Murty, Proceedings of the 46th Electronic Components Technology Conference (IEEE, New York, 1996), p. 1136.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Ipser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimprich, P., Saeed, U., Weiss, B. et al. Constraining Effects of Lead-Free Solder Joints During Stress Relaxation. J. Electron. Mater. 38, 392–399 (2009). https://doi.org/10.1007/s11664-008-0604-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0604-3

Keywords

Navigation