Skip to main content
Log in

Effect of Migration and Condensation of Pre-existing Voids on Increase in Bump Resistance of Flip Chips on Flexible Substrates during Electromigration

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In Pb-free solder joints formed by reflowing a bump of solder paste, voids are formed within the solder due to the residue of flux in the reflow process. These voids migrate toward the cathode contact during electromigration under current stressing. Accompanying the electromigration, resistance jumps of a few 100 mΩ were observed. It was postulated that a jump occurs when a void touches the cathode contact. This study investigated the effect of the void migration and condensation on the change in bump resistance using three-dimensional (3D) simulations and finite element analysis. It was found that there was negligible change in bump resistance during void migration towards the high-current-density region before touching the cathode contact opening. When a small void condensed on the contact opening and depleted 18.4% of the area, the bump resistance increased only 0.4 mΩ. Even when a large void depleted 81.6% of the opening, the increase in bump resistance was 3.3 mΩ. These values are approximately two orders of magnitude smaller than those reported in the literature for the change in resistance due to void migration in flip chips on flexible substrates. We conclude that the reported change in resistance was most likely that of the Al or Cu interconnection in the flip-chip samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, CA (2003)

  2. K.N. Tu, J. Appl. Phys. 94, 5451 (2003)

    Article  CAS  Google Scholar 

  3. C.Y. Liu, C. Chen C.N. Liao, K.N. Tu, Appl. Phys. Lett. 75, 58 (1999)

    Article  CAS  Google Scholar 

  4. E.C.C. Yeh, W.J. Choi, K.N. Tu, P. Elenius, H. Balkan, Appl. Phys. Lett. 80, 580 (2002)

    Article  CAS  Google Scholar 

  5. J.W. Nah, K.W. Paik, J.O. Suh, K.N. Tu, J. Appl. Phys. 94, 7560 (2003)

    Article  CAS  Google Scholar 

  6. H. Ye, C. Basaran, D. Hopkins, Appl. Phys. Lett. 82, 7 (2003)

    Article  Google Scholar 

  7. T.Y. Lee, D.R. Frear, K.N. Tu, J. Appl. Phys. 90, 4502 (2001)

    Article  CAS  Google Scholar 

  8. C.K. Hu, M.B. Small, K.P. Rodbell, C. Stanis, P. Blauner, P.S. Ho, Appl. Phys. Lett. 62, 1023 (1993)

    Article  CAS  Google Scholar 

  9. C.K. Hu, L. Gignac, R. Rosenberg, E. Liniger, J. Rubino, C. Sambucetti, A. Domenicucci, X. Chen, A.K. Stamper, Appl. Phys. Lett. 81, 1782 (2002)

    Article  CAS  Google Scholar 

  10. P.S. Ho, T. Kwok, Rep. Prog. Phys. 52, 301 (1989)

    Article  CAS  Google Scholar 

  11. S.L. Zhang, M. Ostling, H. Norstrom, T. Arnborg, IEEE Trans. Electron Devices 41, 1414 (1994)

    Article  CAS  Google Scholar 

  12. W.M. Loh, K. Saraswat, R.W. Dutton, IEEE Electron Device Lett. EDL-6, 105 (1985)

    Article  Google Scholar 

  13. M. Natan, S. Purushothan, R. Dobrowski, J. Appl. Phys. 53, 5776 (1982)

    Article  Google Scholar 

  14. T.L. Shao, S.H. Chiu, C. Chen, D.J. Yao, C.Y. Hsu, J. Electron. Mater. 33, 1350 (2004)

    Article  CAS  Google Scholar 

  15. Y.W. Chang, S.W. Liang, C. Chen, Appl. Phys. Lett. 89, 032103 (2006)

    Article  Google Scholar 

  16. S.W. Liang, Y.W. Chang, C. Chen, Y.C. Liu, K.H. Chen, S.H. Lin, J. Electron. Mater. 35, 1647 (2006)

    Article  CAS  Google Scholar 

  17. L. Zhang, S. Ou, J. Huang K.N. Tu, S. Gee, L. Nguyen, Appl. Phys. Lett. 88, 012106 (2006)

    Article  Google Scholar 

  18. J.W. Nah, F. Ren, K.N. Tu, S. Venk, G. Camara, J. Appl. Phys. 99, 032520 (2006)

    Article  Google Scholar 

  19. S.W. Liang, Y.W. Chang, T.L. Shao, C. Chen, K.N. Tu, Appl. Phys. Lett. 89, 022117 (2006)

    Article  Google Scholar 

  20. S.W. Liang, S.H. Chiu, C. Chen, Appl. Phys. Lett. 90, 082103 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Science Council of Taiwan of the Republic of China for the financial support under Grant No. NSC 95-2218-E-009-022. In addition, the assistance from the simulation facility of the National Center for High-Performance Computing (NCHC) in Taiwan is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, S., Chang, Y., Chen, C. et al. Effect of Migration and Condensation of Pre-existing Voids on Increase in Bump Resistance of Flip Chips on Flexible Substrates during Electromigration. J. Electron. Mater. 37, 962–967 (2008). https://doi.org/10.1007/s11664-008-0463-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0463-y

Keywords

Navigation