Skip to main content
Log in

Thin film transmission matrix approach to fourier transform infrared analysis of HgCdTe multilayer heterostructures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The ability to achieve high-yield focal plane arrays from Hg1−xCdxTe molecular beam epitaxy material depends strongly on postgrowth wafer analysis. Nondestructive analysis that can determine layer thicknesses as well as alloy compositions is critical in providing run-to-run consistency. In this paper, we incorporate the use of a thin film transmission matrix model to analyze Fourier transform infrared (FTIR) transmission spectra. Our model uses a genetic algorithm along with a multidimensional, nonlinear minimization Nelder-Mead algorithm to determine the composition and thickness of each layer in the measured epitaxial structure. Once a solution has been found, the software is able to predict detector performance such as quantum efficiency and spectral response. We have verified our model by comparing detector spectral data to our predicted spectral data derived from the room-temperature FTIR transmission data. Furthermore, the model can be used to generate design curves for detectors with varying absorber thicknesses and/or different operating temperatures. The consequence of this are reduced cycle times and reduced design variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Daraselia, M. Carmody, M. Zandian, and J.M. Arias, J. Electron. Mater. 33, 761 (2004).

    Article  CAS  Google Scholar 

  2. M. Daraselia, M. Carmody, D.D. Edwall, and T.E. Tiwald, J. Electron. Mater. 34, 762 (2005).

    Article  CAS  Google Scholar 

  3. P.R. Griffiths and J.A. De Haseth, Fourier Transform Infrared Spectrometry (New York: Wiley, 1986).

    Google Scholar 

  4. V. Ariel, V. Garber, G. Bahir, S. Krishnamurthy, and A. Sher, Appl. Phys. Lett. 69, 1864 (1996).

    Article  CAS  Google Scholar 

  5. P. Yeh, Optical Waves in Layered Media (New York: Wiley), (1988).

    Google Scholar 

  6. D. Goldberg, Genetic Algorithms (Reading, MA: Addison-Wesley, 1989).

    Google Scholar 

  7. J.A. Nelder and R. Mead, Computer J. 7, 308 (1965).

    Google Scholar 

  8. Z. Kucera, Phys. Status Solidi A 100, 659 (1987).

    Article  CAS  Google Scholar 

  9. D.T.F. Marple, J. Appl. Phys. 35, 539 (1964).

    Article  CAS  Google Scholar 

  10. B. Jensen and A. Torabi, J. Appl. Phys. 54, 2030 (1983).

    Article  CAS  Google Scholar 

  11. E. Finkman and S.E. Schacham, J. Appl. Phys. 56, 2896 (1984).

    Article  CAS  Google Scholar 

  12. K. Moazzami, J. Phillips, D. Lee, D. Edwall, M. Carmody, E. Piquette, M. Zandian, and J. Arias, J. Electron. Mater. 33, 701 (2004).

    Article  CAS  Google Scholar 

  13. S. Krishnamurthy, A.B. Chen, and A. Sher, J. Appl. Phys. 80, 4045 (1996).

    Article  CAS  Google Scholar 

  14. G.L. Hansen, J.L. Schmidt, and T.N. Casselman, J. Appl. Phys. 53, 7099 (1982).

    Article  CAS  Google Scholar 

  15. S.M. Johnson et al., J. Electron. Mater. 33, 526 (2004).

    Article  CAS  Google Scholar 

  16. E.P.G. Smith et al, J. Electron. Mater. 33, 509 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lofgreen, D.D., Peterson, C.M., Buell, A.A. et al. Thin film transmission matrix approach to fourier transform infrared analysis of HgCdTe multilayer heterostructures. J. Electron. Mater. 35, 1487–1490 (2006). https://doi.org/10.1007/s11664-006-0289-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0289-4

Key words

Navigation