Skip to main content
Log in

Determination of individual layer composition and thickness in multilayer HgCdTe structures

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The reproducible molecular-beam epitaxy (MBE) growth of dual-band Hg1−xCdxTe (MCT) heterostructures requires routine post-growth wafer analysis for constituent layer thickness and alloy composition, therefore, demanding nondestructive characterization techniques that offer quick data feedback. This paper reports a multilayer structure model, which can be least-square fit directly to either Fourier transform infrared (FTIR) transmission or reflection spectra to provide individual layer thickness, alloy composition, and grading information for various complex structures. The model, we developed, is based on an accurate representation of both the real and imaginary parts of the MCT dielectric function across and above E g as a function of alloy composition. The parametric, MCT optical-dielectric function for compositions varying between x=0.17 to x=0.5 was developed in the range from 400 cm−1 to 4,000 cm−1, based on a semi-empirical model for the absorption coefficient and extrapolation of the refractive index across E g . The model parameters were refined through simultaneous fits to multiple reflection and transmission data sets from as-grown, double-layer planar heterostructure (DLPH) structures of variable thickness. The multilayer model was tested on a variety of simple DLPH structures with thick absorber layers (>8 µm) and was compared against traditional FTIR analysis and cross-section optical microscopy and showed good agreement in both composition and thickness. Model fits to dual-color MCT data and subsequent analysis of the internal parameter correlation have demonstrated that error bars on absorber layer composition and thickness could be as low as ∼0.0005 and ∼0.02 µm, correspondingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Ariel, V. Garber, G. Bahir, S. Krishnamurthy, and A. Sher, Appl. Phys. Lett. 69, 1864 (1996).

    Article  CAS  Google Scholar 

  2. R.M. Azzam and N.M. Bashara, Ellipsometry and Polarized Light (Amsterdam: North-Holland, 1977).

    Google Scholar 

  3. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in C (Cambridge, Cambridge University Press, 1992).

    Google Scholar 

  4. P.G. Snyder, J.A. Woollam, S.A. Alterovitz, and B. Johs, J. Appl. Phys. 68, 5925 (1990).

    Article  CAS  Google Scholar 

  5. M. Daraselia, C.H. Grein, S. Rujirawat, B. Yang, S. Sivanathan, F. Aqariden, and H.D. Shih, J. Electron. Mater. 28, 743 (1999).

    Article  CAS  Google Scholar 

  6. E. Finkman and Y. Nemirovsky, J. Appl. Phys. 50, 4356 (1979).

    Article  CAS  Google Scholar 

  7. E. Finkman and S.E. Schacham, J. Appl. Phys. 56, 2896 (1984).

    Article  CAS  Google Scholar 

  8. Z. Kucera, Phys. Status Solidi A 100, 659 (1987).

    Article  CAS  Google Scholar 

  9. E.O. Kane, J. Phys. Chem. Solids 1, 24 (1957).

    Article  Google Scholar 

  10. S. Krishnamurthy, A.B. Chen, and A. Sher, J. Appl. Phys. 80, 4045 (1996).

    Article  CAS  Google Scholar 

  11. S. Krishnamurthy and A. Sher, J. Electron. Mater. 24, 641 (1995).

    CAS  Google Scholar 

  12. S.E. Schacham and E. Finkman, J. Appl. Phys. 57, 2001 (1985).

    Article  CAS  Google Scholar 

  13. J. Phillips, D. Edwall, and D. Lee, J. Electron. Mater. 31, 664 (2002).

    CAS  Google Scholar 

  14. J. Phillips, D. Edwall, L. Don, and J. Arias, J. Vac. Sci. Technol. B 19, 1580 (2001).

    Article  CAS  Google Scholar 

  15. K. Moazzami, D. Liao, J.D. Phillips, D.L. Lee, M. Carmody, M. Zandian, and D.D. Edwall, J. Electron. Mater. 32, 646 (2003).

    Article  CAS  Google Scholar 

  16. S.L. Price and P.R. Boyd, Semicond. Sci. Technol. 8, 842 (1993).

    Article  CAS  Google Scholar 

  17. G.L. Hansen, J.L. Schmidt, and T.N. Casselman, J. Appl. Phys. 53, 7099 (1982).

    Article  CAS  Google Scholar 

  18. E.P. Palik, Handbook of Optical Constants of Solids (Orlando, FL: Academic Press Inc., 1991).

    Google Scholar 

  19. W.G. Breiland and K.P. Kleen, J. Appl. Phys. 78, 6726 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daraselia, M., Carmody, M., Zandian, M. et al. Determination of individual layer composition and thickness in multilayer HgCdTe structures. J. Electron. Mater. 33, 761–766 (2004). https://doi.org/10.1007/s11664-004-0079-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0079-9

Key words

Navigation