Skip to main content
Log in

Metalorganic chemical vapor deposition growth and characterization of InGaP/GaAs superlattices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Lattice-matched In0.49Ga0.51P/GaAs superlattices were grown on (001) GaAs substrates using metalorganic chemical vapor deposition. The interface properties were characterized by photoluminescence, transmission electron microscopy, and x-ray diffraction. By varying the growth temperature, the precursor flow rates, and the growth interruption at the interfaces, we found that, while arsenic and phosphorus carry over have some effect on the formation of a low-bandgap InGaAsP quaternary layer at the interfaces, the In surface segregation seems to play an important role in the formation of the interface quaternary layer. Evidence of this indium segregation comes from x-ray and photoluminescence studies of samples grown at different temperatures. These studies show that the formation of an interfacial layer is more prominent when the growth temperature is higher. Growing a thin (∼1 monolayer thick) GaP intentional interfacial layer on top of the InGaP before the growth of the GaAs layer at the P→As transition effectively suppresses the formation of the low-bandgap unintentional interface layer. On the other hand, the growth of a thin GaAsP (or GaP) layer before the growth of the InGaP layer, at the As→P transition increases the formation of a low-bandgap interfacial layer. This nonequivalent effect of a GaP layer at the two interfaces on the PL properties is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Yang, D.A. Kellogg, C. Lin, G.E. Stillman, and N. Holonyak, Jr., Appl. Phys. Lett. 75, 1101 (1999).

    Article  CAS  ADS  Google Scholar 

  2. D.P. Bour, J.R. Shealy, and S. McKernan, J. Appl. Phys. 63, 1241 (1988).

    Article  CAS  ADS  Google Scholar 

  3. Y.H. Kwon, W.G. Jeong, Y.H. Cho, and B.D. Choe, Appl. Phys. Lett. 76, 2379 (2000).

    Article  CAS  ADS  Google Scholar 

  4. T. Nittono, S. Sugitani, and F. Hyuga, J. Appl. Phys. 78, 5387 (1995).

    Article  CAS  ADS  Google Scholar 

  5. C.Y. Tsai, M. Moser, C. Geng, V. Harle, T. Forner, P. Michler, A. Hangleiter, and F. Scholz, J. Cryst. Growth 145, 786 (1994).

    Article  CAS  Google Scholar 

  6. F. Omnes and M. Razeghi, Appl. Phys. Lett. 59, 1034 (1991).

    Article  CAS  ADS  Google Scholar 

  7. R. Kudela, M. Kucera, B. Olejnikova, P. Elias, S. Hasenohrl, and J. Novak, J. Cryst. Growth 212, 21 (2000).

    Article  CAS  Google Scholar 

  8. A. Knauer, P. Krispin, V.R. Balakrishnan, H. Kissel, and M. Weyers, Semicond. Sci. Technol. 19, 680 (2004).

    Article  CAS  ADS  Google Scholar 

  9. Y. Dong, R.M. Feenstra, M.P. Semtsiv, and W.T. Masselink, Appl. Phys. Lett. 84, 227 (2004).

    Article  CAS  ADS  Google Scholar 

  10. K. Uchida, T. Arai, and K. Matsumoto, J. Appl. Phys. 81, 771 (1997).

    Article  CAS  ADS  Google Scholar 

  11. M. Mesrine, J. Massies, C. Deparis, N. Grandjean, and E. Vanelle, Appl. Phys. Lett. 68, 3579 (1996).

    Article  CAS  ADS  Google Scholar 

  12. O. Dehaese, X. Wallart, and F. Mollot, Appl. Phys. Lett. 66, 52 (1994).

    Article  Google Scholar 

  13. Q. Liu, S. Derksen, W. Prost, A. Lindner, and F.J. Tegude, J. Appl. Phys. 79, 305 (1996).

    Article  CAS  ADS  Google Scholar 

  14. S. Froyen, A. Zunger, and A. Mascarenhas, Appl. Phys. Lett. 68, 2852 (1996).

    Article  CAS  ADS  Google Scholar 

  15. T. Nittono and F. Hyuga, J. Appl. Phys. 81, 2607 (1997).

    Article  CAS  ADS  Google Scholar 

  16. The intensity difference is defined as: 2|(INa - INb)/(Ia + INb), where I is peak intensity, N is the Nth satellite peak, and a and b represent the corresponding samples.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X.B., Ryou, J.H., Dupuis, R.D. et al. Metalorganic chemical vapor deposition growth and characterization of InGaP/GaAs superlattices. J. Electron. Mater. 35, 705–710 (2006). https://doi.org/10.1007/s11664-006-0125-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0125-x

Key words

Navigation