Skip to main content
Log in

Structural Characteristics of Epitaxial Low-Temperature Grown {InGaAs/InAlAs} Superlattices on InP(100) and InP(111)A Substrates

  • CRYSTAL GROWTH
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The structural characteristics of {InGaAs/InAlAs} superlattices, grown by molecular-beam epitaxy (MBE) at a temperature of 200°C on InP substrates with the crystallographic orientations (100) and (111)A, have been investigated. The superlattices consist of 100 periods of alternating In0.53Ga0.47As and In0.52Al0.48As layers with nominal thicknesses of 12 and 8 nm, respectively. The structural quality of the samples has been investigated by transmission electron microscopy (TEM). It is shown that the superlattice on the InP(100) substrate is single-crystal with high concentration of stacking faults, twins, and small-angle domains. The superlattice on the InP(111)A substrate is polycrystalline; however, the grown layers can be traced throughout almost the entire superlattice. A wave-like curvature of the layers grown on the InP(111)A substrate is much larger than that of the layers grown on the InP(100) substrate: the angular ranges of layer deviation from the horizontal growth plane reach ±30° and ±18°, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Krotkus, J. Phys. D: Appl. Phys. 43, 273001 (2010).

    Article  Google Scholar 

  2. J.-L. Coutaz, J.-F. Roux, A. Gaarder, et al., XI Int. Semiconducting and Insulating Materials Conf., 3–7 July2000, Australian National University, Canberra, p. 89.

  3. C. Baker, I. S. Gregory, W. R. Tribe, et al., Appl. Phys. Lett. 83 (20), 4113 (2003).

    Article  ADS  Google Scholar 

  4. C. Baker, I. S. Gregory, W. R. Tribe, et al., Appl. Phys. Lett. 85 (21), 4965 (2004).

    Article  ADS  Google Scholar 

  5. C. Baker, I. S. Gregory, M. J. Evans, et al., Opt. Express 13 (23), 9639 (2005).

    Article  ADS  Google Scholar 

  6. I. Kostakis and M. Missous, AIP Adv. 3, 092131 (2013).

    Article  ADS  Google Scholar 

  7. H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, Appl. Phys. Lett. 61 (11), 1347 (1992).

    Article  ADS  Google Scholar 

  8. H. Künzel, J. Böttcher, R. Gibis, et al., J. Cryst. Growth 127, 519 (1993).

    Article  ADS  Google Scholar 

  9. B. Globish, R. J. B. Dietz, D. Stanze, et al., Appl. Phys. Lett. 104, 172103 (2014).

    Article  ADS  Google Scholar 

  10. I. Kostakis, D. Saeedkia, and M. Missous, J. Appl. Phys. 111, 103105 (2012).

    Article  ADS  Google Scholar 

  11. L. C. Pocas, E. M. Lopes, J. L. Duarte, et al., J. Appl. Phys. 97, 103518 (2005).

    Article  ADS  Google Scholar 

  12. R. J. B. Dietz, B. Globish, M. Gerhars, et al., Appl. Phys. Lett. 103, 061103 (2013).

    Article  ADS  Google Scholar 

  13. H. Roehle, R. J. B. Dietz, H. J. Hensel, et al., Opt. Express 18 (3), 2296 (2010).

    Article  ADS  Google Scholar 

  14. R. J. B. Dietz, Ph. D. Thesis (Phillips Universität, Marburg, 2015).

  15. R. J. B. Dietz, A. Brahm, A. Velauthapillai, et al., J. Infrared, Millimeter, Terahertz Waves 36 (1), 1 (2014).

    Google Scholar 

  16. C. D. Yerino, B. Liang, D. L. Huffakeret, et al., J. Vac. Sci. Technol. B 35 (1), 010801 (2017).

    Article  Google Scholar 

  17. A. Chin, P. Martin, P. Ho, et al., Appl. Phys. Lett. 59 (15), 1899 (1991).

    Article  ADS  Google Scholar 

  18. P. O. Vaccaro, K. Tominaga, M. Hosoda, et al., Jpn. J. Appl. Phys. 34 (2B), Part 1, 1362 (1995).

    Article  ADS  Google Scholar 

  19. J. G. Belk, J. L. Sudijono, H. Yamaguchi, et al., J. Vac. Sci. Technol. A 15 (3), 915 (1997).

    Article  ADS  Google Scholar 

  20. P. P. Gonzales-Borrero, D. I. Lubyshev, E. Marega, et al., J. Cryst. Growth 169 (3), 424 (1996).

    Article  ADS  Google Scholar 

  21. W. Yeo, R. Dimitrov, W. J. Schaff, et al., Appl. Phys. Lett. 77 (17), 2764 (2000).

    Article  ADS  Google Scholar 

  22. G. B. Galiev, S. S. Pushkarev, A. M. Buryakov, et al., Semiconductors 51 (4), 503 (2017).

    Article  ADS  Google Scholar 

  23. K. A. Kuznetsov, G. B. Galiev, G. Kh. Kitaeva, et al., Laser Phys. Lett. 15 (7), 076201 (2018).

    Article  ADS  Google Scholar 

  24. G. B. Galiev, M. M. Grekhov, G. Kh. Kitaeva, et al., Semiconductors 51 (3), 310 (2017).

    Article  ADS  Google Scholar 

  25. G. B. Galiev, I. N. Trunkin, A. L. Vasiliev, et al., Crystallogr. Rep. 64 (2), 205 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-32-20207 mol_a_ved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Pushkarev.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galiev, G.B., Vasiliev, A.L., Vasil’evskii, I.S. et al. Structural Characteristics of Epitaxial Low-Temperature Grown {InGaAs/InAlAs} Superlattices on InP(100) and InP(111)A Substrates. Crystallogr. Rep. 65, 496–501 (2020). https://doi.org/10.1134/S1063774520030104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520030104

Navigation