Skip to main content
Log in

Ion Beam Analysis of Amorphous and Nanocrystalline Group III-V Nitride and ZnO Thin Films

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The ion beam analysis (IBA) techniques of Rutherford backscattering spectrometry (RBS), elastic recoil detection analysis (ERDA), nuclear reaction analysis (NRA), and particle-induced x-ray emission (PIXE) have been used to quantitatively determine composition, uniformity, impurity, and elemental depth profiles of major, minor, and trace elements of group III-V nitride and zinc oxide (ZnO) thin films prepared by various growth techniques. The IBA revealed that an amorphous GaN film prepared by ion beam assisted deposition (IBAD) has large variations in film thickness and composition coupled with typically 10–20% oxygen that was found to be essential to stabilize their amorphous structure. The IBA characterization of plasma-assisted molecular beam epitaxy (PAMBE) grown GaN, InN, and InCrN films revealed composition, impurity, and uniformity information of the films. The IBA of ZnO films prepared by radio frequency (RF) sputtering showed that the Zn/O ratio often varied significantly over the film thickness. Hydrogen was found to be a major impurity in the films with around one present in the as-deposited ZnO films. It is clearly shown that the nondestructive, quantitative, and rapid IBA measurements are very useful to develop and optimize growth protocols in respect to film thickness, stoichiometry, and especially in regard to hydrogen and oxygen impurities for group III-V nitride and ZnO thin films prepared by various growth techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stoqurt J.P., Szorenyi T. (2002) Phys. Rev. B 66:144108

    Article  Google Scholar 

  2. Pereira S., Correia M.R., Pereira E., O’Donnell K.P., Trager-Cowan C., Sweeney F., Alves E. (2001) Phys. Rev. B 64:205311

    Article  Google Scholar 

  3. Kang Y., Ingram D.C. (2003) J. Appl. Phys. 93:3954

    Article  CAS  Google Scholar 

  4. Kennedy V.J., Markwitz A., Lanke U.D., McIvor A., Trodahl H.J., Bittar A. (2002) Nucl. Instrum. Meth. B190:620

    Google Scholar 

  5. Markwitz A., Kennedy V.J., Durbin S.M., Johnson P.B., Mucklich A., Dytlewski N. (2004) Surf. Interface Analysis 36:317

    Article  CAS  Google Scholar 

  6. Markwitz A., White G.V. (2001) Adv. Mater. 13:1027

    Article  CAS  Google Scholar 

  7. C. Grigorescu, E. Valerio, L. Tortet, R. Notonier, H.J. Trodahl Kennedy V.J., A. Markwitz, S.A. Manea, and M. Autric, J. Cryst. Growth 275, e1183 (2005)

  8. Engel A., Trodahl H.J., Markwitz A., Kennedy V.J. (2001) Mod. Phys. Lett. B 15:1314

    Article  CAS  Google Scholar 

  9. Kennedy V.J., Markwitz A., Bubendorfer A., Long N., Dytlewski N. (2004) Curr. Appl. Phys. 4:292

    Article  Google Scholar 

  10. Johnson P.B., Markwitz A., Gilberd P.W. (2001) Adv. Mater. 13:997

    Article  CAS  Google Scholar 

  11. Johnson N.M., Nurmikko A.V., DenBaars S.P. (2000) Phys. Today 53:31

    Article  CAS  Google Scholar 

  12. S. Nakamura and G. Fasol The Blue Laser Diode(Berlin, Springer, 1998)

  13. Yu K.M., Walukiewicz W., Wojtowicz T., Kuryliszyn I., Liu X., Sasaki Y., Furdyna J.K. (2002) Phys. Rev. B 65:201303

    Article  Google Scholar 

  14. D.P. Norton, Y.W. Heo, M.P. Ivil, S.J. Pearton, M.F. Chisholm, and T. Steiner, Mater. Today 34, (2004)

  15. Iwata K., Asahi H., Asami K., Kuroriwa R., Gonda S. (1997) Jpn. J. Appl. Phys. 36:L661

    Article  CAS  Google Scholar 

  16. Park M., Maria J.P., Cuomo J.J., Chang Y.C., Muth J.F., Kolbas R.M., Nemanich R.J., Carlson E., Bumgarner J. (2002) Appl. Phys. Lett. 81:1797

    Article  CAS  Google Scholar 

  17. Yang Y., Ma H., Xue C., Zhuang H., Hao X., Ma J., Teng S. (2002) Appl. Surf. Sci. 193:254

    CAS  Google Scholar 

  18. Bittar A., Trodahl H.J., Kemp N.T., Markwitz A. (2001) Appl. Phys. Lett. 78:619

    Article  CAS  Google Scholar 

  19. J.R. Tesmer and M. NastasiHandbook for Modern Ion Beam Analysis( Pittsburgh, PA: Materials Research Society,1995)

  20. Bird J.R., Williams J.S. (1989) Ion Beams for Material Analysis. Academic Press, Australia

    Google Scholar 

  21. W.K. Chu, J.W. Mayer, andM.A. NicoletBackscattering Spectrometry (New York: Academic Press, Inc., 1978)

  22. Morral A.F., Cabarrocas P.R., Clerc C. (2004) Phys. Rev. B 69:125307

    Article  Google Scholar 

  23. Kennedy V.J., Markwitz A., White G.V., Brown I.W.M. (2001) Mod. Phys. Lett. B 15:1332

    Article  CAS  Google Scholar 

  24. Johansson S.A.E., Campbell J.L. (1995) Particle Induced X-ray Emission Spectrometry. Wiley, New York

    Google Scholar 

  25. Lanke U.D., et al. (2002) Mater. Res. Soc. Symp. Proc. 693:I6.10.1

    Google Scholar 

  26. Trodahl H.J., Budde F., Ruck B.J., Granville S., Koo A., Bittar A. (2005) J. Appl. Phys. 97:084309

    Article  Google Scholar 

  27. Budde F., et al. (2005) J. Appl. Phys. 98:063514

    Article  Google Scholar 

  28. Ruck B.J., Koo A., Lanke U.D., Budde F., Granville S., Trodahl H.J., Bittar A., Kennedy V.J., Markwitz A. (2004) Phys. Rev. B 70:235202

    Article  Google Scholar 

  29. Doolittle L.R. (1985) Nucl. Instrum. Meth. B9:3341985

    Google Scholar 

  30. Johnson P.B., Kennedy V.J., Markwitz A., Varoy C. (2003) Nucl. Instrum. Meth. B206:1056

    Google Scholar 

  31. M. Mayer SIMNRA Users Guide, Report IPP 9/113. (Garching, Germany: Max-Planck-Institute fur Plasmaphysik, 1997)

  32. Cui Y., Li L. (2002) Appl. Phys. Lett. 80:4139

    Article  CAS  Google Scholar 

  33. Rao B.K., Jena P. (2002) Phys. Rev. Lett. 89:185504

    Article  CAS  Google Scholar 

  34. Maxwell J.A., Teesdale W.J., Cambell J.L. (1995) Nucl. Instrum. Meth. B 95:407

    Article  CAS  Google Scholar 

  35. Christie V.A., Liem S.I., Reeves R., Kennedy V.J., Markwitz A., Durbin S.M. (2004) Curr. Appl. Phys. 4:225

    Article  Google Scholar 

  36. V.J. Kennedy, A. Markwitz, R.J. Kinsey, S.M. Durbin, and N. Dytlewski, Proc. 13th Nuclear Techniques of Analysis & 8th Vacuum Society of Australia Congr., p. 151

  37. Materer N., Goodman R.S., Leone S.R.(1998) J. Appl. Phys. 83:1917

    Article  CAS  Google Scholar 

  38. Anderson P.A., Kendrick C.E., Lee T.E., Diehl W., Reeves R.J., Kennedy V.J., Markwitz A., Kinsey R.J., Durbin S.M. (2004) Proc. SPIE Int. Soc. Opt. Eng. 90:5277

    Google Scholar 

  39. S.M. Durbin, P.A. Anderson, A. Markwitz, and J. Kennedy, Thin Sold Films (in press)

  40. L.M. Corliss, N. Elliot, and J.M. Hastings. Phys. Rev. 117, (1960)

  41. Anderson P.A., Kinsey R.J., Durbin S.M., Markwitz A., Kennedy J., Asadov A., Gao W., Reeves R.J. (2005) J. Appl. Phys. 98:043903

    Article  Google Scholar 

  42. Look D.C. (2001) Mater. Sci. Eng. B 80:383

    Article  Google Scholar 

  43. Huang H.M., Mao S., Feick H., Yan H., Wu Y., Kind H., Weber E., Russo R., Yang P. (2001) Sci. 292:1897

    Article  CAS  Google Scholar 

  44. Ko H.J., Yao T., Chen Y.F., Hong S.K. (2002) J. Appl. Phys. 92:4354

    Article  CAS  Google Scholar 

  45. Kato H., Sano M., Miyamoto K., Yao T. (2003) Jpn. J. Appl. Phys. 42:2241

    Article  CAS  Google Scholar 

  46. Minami T., Sato H., Nanto H., Takata S. (1985) Jpn. J. Appl. Phys. Part 2 24:L781

    Article  Google Scholar 

  47. Wernas W., Yamada A., Kawasaki M. (1994) Jpn. J. Appl. Phys. 33:L283

    Article  Google Scholar 

  48. Dutta A., Basu S. (1993) Mater. Chem. Phys. 34:41

    Article  CAS  Google Scholar 

  49. Guo X.L., Tabata H., Kawai T. (2001) J. Cryst. Growth. 223:135

    Article  CAS  Google Scholar 

  50. Gao W., Li Z. (2004) Ceram. Int. 30:1155

    Article  CAS  Google Scholar 

  51. Xu X.L., Lau S.P., Chen J.S. (2001) Mater. Sci. Semicond. Process 4:617

    Article  CAS  Google Scholar 

  52. Van de Walle C.G. (2000) Phys. Rev. Lett. 85:1012

    Article  Google Scholar 

  53. J. Kennedy, A. Markwitz, Z. Li, W. Gao, S. Durbin, and R. Reeves (Paper presented at Proc. 4th Int. Conf. on Advanced Materials and Performance (ADMP05), New Zealand, July 11–13, 2005)

  54. W.C.T. Lee, J. Kennedy, A. Markwitz, R.J. Kinsey, and S.M. Durbin (Paper presented at Proc. 14th AINSE Conf. on Nuclear and Complementary Techniques of Analysis & 9th Vacuum Society of Australia Congr., Wellington, New Zealand, Nov. 20–22, 2005)

Download references

Acknowledgements

The authors thank the GNS Science (formerly the Institute of Geological & Nuclear Sciences) IBA team members and our collaborators from the Victoria University of Wellington, the University of Canterbury, and the University of Auckland for their significant contributions to the work discussed in this paper. This project is supported by the Foundation for Research Science and Technology of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kennedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, J., Markwitz, A., Trodahl, H.J. et al. Ion Beam Analysis of Amorphous and Nanocrystalline Group III-V Nitride and ZnO Thin Films . J. Electron. Mater. 36, 472–482 (2007). https://doi.org/10.1007/s11664-006-0051-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0051-y

Keywords

Navigation