Skip to main content
Log in

Steady-state electron transport in the III–V nitride semiconductors: A sensitivity analysis

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We studied the sensitivity of the steady-state electron transport in GaN to variations in the important material parameters related to the band structure. We found (a) that an increase in the lowest conduction-band-valley effective mass leads to a lowering and broadening of the peak in the velocity-field characteristic, as well as to an increase in the field at which the peak occurs; (b) that increases in the upper conduction-band-valley effective masses dramatically decrease the saturation drift velocity, with very little other effect; (c) that increased nonparabolicity of the lowest conduction-band valley leads to a broadening and shifting to higher electric fields of the peak in the velocity-field characteristic; (d) that increases in the intervalley energy separation lead to moderate increases in the peak drift velocity; and (e) that increases in the degeneracy of the upper conduction-band valleys leads to a moderate decrease in the saturation drift velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Strite and H. Morkoç, J. Vac. Sci. Technol. B 10, 1237 (1992).

    Google Scholar 

  2. H. Morkoç, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).

    Article  Google Scholar 

  3. S.N. Mohammad and H. Morkoç, Prog. Quant. Electron. 20, 361 (1996).

    Article  CAS  Google Scholar 

  4. S.J. Pearton, J.C. Zolper, R.J. Shul, and F. Ren, J. Appl. Phys. 86, 1 (1999).

    Article  CAS  Google Scholar 

  5. S. Nakamura, Mater. Res. Soc. Bull. 22, (2) 29 (1997).

    CAS  Google Scholar 

  6. M.S. Shur and M.A. Khan, Mater. Res. Soc. Bull. 22, (2) 44 (1997).

    CAS  Google Scholar 

  7. M.A. Littlejohn, J.R. Hauser, and T.H. Glisson, Appl. Phys. Lett. 26, 625 (1975).

    Article  CAS  Google Scholar 

  8. D.K. Ferry, Phys. Rev. B 12, 2361 (1975).

    Article  CAS  Google Scholar 

  9. B. Gelmont, K. Kim, and M. Shur, J. Appl. Phys. 74, 1818 (1993).

    Article  CAS  Google Scholar 

  10. J. Kolník, I.H. Oguzman, K.F. Brennan, R. Wang, P.P. Ruden, and Y. Wang, J. Appl. Phys. 78, 1033 (1995).

    Article  Google Scholar 

  11. M. Shur, B. Gelmont, and M.A. Khan, J. Electron. Mater. 25, 777 (1996).

    CAS  Google Scholar 

  12. B.E. Foutz, L.F. Eastman, U.V. Bhapkar, and M.S. Shur, Appl. Phys. Lett. 70, 2849 (1997).

    Article  CAS  Google Scholar 

  13. U.V. Bhapkar and M.S. Shur, J. Appl. Phys. 82, 1649 (1997).

    Article  CAS  Google Scholar 

  14. S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, and L.F. Eastman, J. Appl. Phys. 83, 826 (1998).

    Article  CAS  Google Scholar 

  15. S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, and L.F. Eastman, Solid State Commun. 105, 621 (1998).

    Article  CAS  Google Scholar 

  16. J.D. Albrecht, R.P. Wang, P.P. Ruden, M. Farahmand, and K.F. Brennan, J. Appl. Phys. 83, 1446 (1998).

    Article  CAS  Google Scholar 

  17. N.G. Weimann, L.F. Eastman, D. Doppalapudi, H.M. Ng, and T.D. Moustakas, J. Appl. Phys. 83, 3656 (1998).

    Article  CAS  Google Scholar 

  18. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, and U.V. Bhapkar, Mater. Res. Soc. Symp. Proc. 482, 845 (1998).

    CAS  Google Scholar 

  19. J.D. Albrecht, R.P. Wang, P.P. Ruden, M. Farahmand, and K.F. Brennan, J. Appl. Phys. 83, 4777 (1998).

    Article  CAS  Google Scholar 

  20. E. Bellotti, B.K. Doshi, K.F. Brennan, J.D. Albrecht, and P.P. Ruden, J. Appl. Phys. 85, 916 (1999).

    Article  CAS  Google Scholar 

  21. B.E. Foutz, S.K. O’Leary, M.S. Shur, and L.F. Eastman, J. Appl. Phys. 85, 7727 (1999).

    Article  CAS  Google Scholar 

  22. S. Krishnamurthy, M. van Schilfgaarde, A. Sher, and A.-B. Chen, Appl. Phys. Lett. 71, 1999 (1997).

    Article  CAS  Google Scholar 

  23. J.D. Albrecht, R. Wang, P.P. Ruden, M. Farahmand, E. Bellotti, and K.F. Brennan, Mater. Res. Soc. Symp. Proc. 482, 815 (1998).

    CAS  Google Scholar 

  24. B.E. Foutz, S.K. O’Leary, M.S. Shur, and L.F. Eastman, Mater. Res. Soc. Symp. Proc. 572, 445 (1999).

    CAS  Google Scholar 

  25. In the Kane model, the energy band of the Γ valley is assumed to be nonparabolic, spherical, and of the form \(\frac{{^2 k^2 }}{{2m}} = E(1 + \alpha E),\) where hk denotes the crystal momentum, E represents the energy above the minimum, m* is the effective mass, and the nonparabolicity coefficient, α, is given by \(\alpha = \frac{1}{{{\rm E}g}}\left( {1 - \frac{{m*}}{{m_e }}} \right)^2 ,\) where me and Eg denote the free-electron mass and the energy gap, respectively.26

  26. W. Fawcett, A.D. Boardman, and S. Swain, J. Phys. Chem. Solids 31, 1963 (1970).

    Article  CAS  Google Scholar 

  27. Piezoelectric scattering is treated using the well-established zinc-blende scattering rates, and thus, a suitably transformed piezoelectric constant, e14, must be selected. This may be achieved through the transformation suggested by Bykhovski et al.28

  28. A.D. Bykhovski, V.V. Kaminski, M.S. Shur, Q.C. Chen, and M.A. Khan, Appl. Phys. Lett. 68, 818 (1996).

    Article  CAS  Google Scholar 

  29. P. Lugli and D.K. Ferry, IEEE Trans. Electron. Dev. 32, 2431 (1985).

    Google Scholar 

  30. K. Seeger, Semiconductor Physics, 6th ed. (New York: Springer, 1997).

    Google Scholar 

  31. V.W.L. Chin, T.L. Tansley, and T. Osotchan, J. Appl. Phys. 75, 7365 (1994).

    Article  CAS  Google Scholar 

  32. The longitudinal and transverse sound velocities are equal to \(\sqrt {\frac{{C_l }}{\rho }} {\mathbf{ }}and{\mathbf{ }}\sqrt {\frac{{C_t }}{\rho }} \) respectively, where C1 and Ct denote the respective elastic constants, and ρ represents the density.

  33. H.P. Maruska and J.J. Tietjen, Appl. Phys. Lett. 15, 327 (1969).

    Article  CAS  Google Scholar 

  34. All intervalley deformation potentials are set to 1×109 eV/cm, following the approach of Gelmont et al.9

  35. We follow the approach of Bhapkar and Shur13, and set the intervalley-phonon energies equal to the optical-phonon energy, a relationship which holds approximately for GaAs.36

  36. M.A. Littlejohn, J.R. Hauser, and T.H. Glisson, J. Appl. Phys. 48, 4587 (1977).

    Article  CAS  Google Scholar 

  37. W.R.L. Lambrecht and B. Segall, in Properties of Group III Nitrides, No. 11 EMIS Datareviews Series, ed. J.H. Edgar (London: Inspec, 1994), p. 141.

    Google Scholar 

  38. To determine the nonparabolicity coefficient, α, we applied the Kane model to the central conduction-band-valley minimum, following Bhapkar and Shur.13,25,26 The nonparabolicity coefficient, α, corresponding to the upper conduction-band valleys, are set to zero, as they are assumed to be parabolic.

  39. This selection of upper conduction-band-valley effective mass is larger than that found in Bhapkar and Shur13 and O’Leary et al.,14 and hence, the results are expected to be different.

  40. We have nominally assumed that the first upper conduction-band valley is nondegenerate, i.e., g=1.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Leary, S.K., Foutz, B.E., Shur, M.S. et al. Steady-state electron transport in the III–V nitride semiconductors: A sensitivity analysis. J. Electron. Mater. 32, 327–334 (2003). https://doi.org/10.1007/s11664-003-0153-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-003-0153-8

Key words

Navigation