Skip to main content
Log in

Thermodynamic model for MnO-containing slags and gas-slag-metal equilibrium in ferromanganese smelting

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The thermodynamics of MnO-containing slags was reviewed, and the properties of such slags were correlated by application of the cell model. This model, together with a previously developed unified interaction parameter model for the metal phase, was used to simulate the gas-slag-metal conditions in the hearth of a ferromanganese submerged arc furnace. The calculated slag and metal compositions and distribution of Mn, Si, and K between slag, metal, and fume were compared with plant data and satisfactory agreement was obtained. A steady recirculation of potassium inside the furnace was also predicted. For a potassium percentage in the raw materials of 0.63 pct, the amount of the recirculating potassium was about 160 kg per metric ton of ferromanganese. Due to the recirculation, the average potassium content in the solid mix coming down to the hearth could be as high as 7 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wagner: Thermodynamics of Alloys, Addison-Wesley, Cambridge, MA, 1952.

    Google Scholar 

  2. C.H.P. Lupis and J.F. Elliott: Acta Metall., 1966, vol. 14, pp. 529–38.

    Article  CAS  Google Scholar 

  3. C.H.P. Lupis: Chemical Thermodynamics of Materials, Elsevier, New York, NY, 1983.

    Google Scholar 

  4. A.D. Pelton and C.W. Bale: Metall. Trans. A, 1986, vol. 17A, pp. 1211–15.

    CAS  Google Scholar 

  5. C.W. Bale and A.D. Pelton: Metall. Trans. A, 1990, vol. 21A, pp. 1997–2002.

    CAS  Google Scholar 

  6. L.S. Darken: Trans. TMS-AIME, 1967, vol. 239, pp. 90–96.

    CAS  Google Scholar 

  7. M. Margules: Sitzungsber Wiend Akad., 1895, vol. 104, p. 1243.

    Google Scholar 

  8. J.H. Hildebrand: Proc. Nat. Acad. Sci., 1929, vol. 13, p. 267; J. Am. Chem. Soc., 1929, vol. 51, p. 66.

    Article  Google Scholar 

  9. A.S. Jordan: Calculation of Phase Di agrams and Thermochemistry of Alloy Phases, TMS-AIME, Warrendale, PA, 1979, pp. 100–29.

    Google Scholar 

  10. S. Ban-ya: Proc. 4th Int. Conf. on Molten Slags and Fluxes, ISIJ, Sendai, Japan, 1992, pp. 8–13.

    Google Scholar 

  11. B. Bjorkman: Scand. J. Metall., 1986, vol. 15, pp. 191–98.

    Google Scholar 

  12. E.R. Plante, D.W. Bonnell, and J.W. Hastie: Advances in the Fusion of Glass, American Ceramic Society, Westerville, OH, 1988, pp. 26.1–26.18.

    Google Scholar 

  13. H.H. Kellogg, Y.H. Kim, T. Stapurewicz, D. Verdonik, and G. Archer: Physical Chemistry of Extractive Metallurgy, AIME, Warrendale, PA, 1985, pp. 3–21.

    Google Scholar 

  14. K.C. Hsieh and Y.A. Chang: Can. Metall. Q., 1987, vol. 26, pp. 311–27.

    CAS  Google Scholar 

  15. R.C. Schmid: Metall. Trans. B, 1983, vol. 14B, pp. 473–81.

    CAS  Google Scholar 

  16. R.C. Sharma, J.C. Lin, and Y.A. Chang: Metall. Trans. B, 1987, vol. 18B, pp. 237–44.

    CAS  Google Scholar 

  17. M. Hillert, B. Jansson, B. Sundman, and J. Agren: Metall. Trans. A, 1985, vol. 16A, pp. 261–66.

    CAS  Google Scholar 

  18. M. Hillert, B. Jansson, and B. Sundman: Metall. Trans. B, 1990, vol. 21B, pp. 404–06.

    CAS  Google Scholar 

  19. M. Hillert, B. Sundman, and X. Wang: Metall. Trans. B, 1990, vol. 21B, pp. 303–12.

    CAS  Google Scholar 

  20. G.W. Toop and C.S. Samis: Trans. TMS-AIME, 1962, vol. 224, pp. 878–87.

    CAS  Google Scholar 

  21. C.R. Masson: Proc. R. Soc., 1965, vol. A287, pp. 201–21.

    Google Scholar 

  22. S.G. Whiteway, I.B. Smith, and C.R. Masson: Can. J. Chem., 1970, vol. 48, pp. 33–45.

    Article  CAS  Google Scholar 

  23. S.G. Whiteway, I.B. Smith, and C.R. Masson: Can. J. Chem., 1970, vol. 48, pp. 1456–64.

    Article  Google Scholar 

  24. D.R. Gaskell: Can. Metall. Q., 1981, vol. 20, pp. 3–19.

    CAS  Google Scholar 

  25. E.A. Guggenheim: Proc. R. Soc., 1935, vol. A148, p. 304–12.

    CAS  Google Scholar 

  26. R.H. Fowler and E.A. Guggenheim: Statistical Thermodynamics, Cambridge University Press, Cambridge, United Kingdom, 1939, pp. 350–66.

    Google Scholar 

  27. A.D. Pelton and M. Blander: Metall. Trans. B, 1986, vol. 17B, pp. 805–15.

    CAS  Google Scholar 

  28. M. Blander and A.D. Pelton: Geochim. Cosmochim. Acta, 1987, vol. 51, pp. 85–95.

    Article  CAS  Google Scholar 

  29. A.D. Pelton and M. Blander: CALPHAD, 1988, vol. 12, pp. 97–108.

    Article  CAS  Google Scholar 

  30. P. Wu, G. Eriksson, A.D. Pelton, and M. Blander: Iron Steel Inst. Jpn. Int., 1993, vol. 33, pp. 26–35.

    CAS  Google Scholar 

  31. P. Wu, G. Eriksson, and A.D. Pelton: J. Am. Ceram. Soc., 1993, vol. 76, pp. 2059–64.

    Article  CAS  Google Scholar 

  32. P. Wu, G. Eriksson, and A.D. Pelton: J. Am. Ceram. Soc., 1993, vol. 76, pp. 2065–75.

    Article  CAS  Google Scholar 

  33. G. Eriksson, P. Wu, M. Blander, and A.D. Pelton: Can. Metall. Q., 1994, vol. 33, pp. 13–21.

    CAS  Google Scholar 

  34. M.L. Kapoor and M.G. Frohberg: Chem. Metall. Iron Steel, Iron and Steel Institute, London, 1973, pp. 17–25.

    Google Scholar 

  35. H. Gaye and J. Welfringer: Proc. 2nd Int. Symp. on Metallurgical Slags and Fluxes, TMS, Warrendale, PA, 1984, pp. 357–75.

    Google Scholar 

  36. H. Gaye, P.V. Riboud, and J. Welfringer: Ironmaking and Steelmaking, 1988, vol. 15, pp. 319–22.

    Google Scholar 

  37. H. Gaye, P.V. Riboud, and J. Welfringer: Process Technology Proc., Washington, DC, 1986, Iron and Steel Society, Warrendale, PA, 1986, vol. 6, pp. 631–39.

    Google Scholar 

  38. J. Lehmann and H. Gaye: Rev. Int. Hautes Temp. Refract., 1992–1993, vol. 28, pp. 81–90.

    CAS  Google Scholar 

  39. H. Gaye, J. Lehmann, T. Matsumiya, and W. Yamada: “A Statistical Thermodynamic Model of Slags: Applications to Systems Containing S, F, P2O5 and Cr Oxides,” private communication, IRSID, France.

  40. H. Gaye, J. Lehmann, T. Matsumiya, and W. Yamada: Proc. 4th Int. Conf. on Molten Slags and Fluxes, Iron and Steel Institute of Japan, Sendai, Japan, 1992, pp. 103–08.

    Google Scholar 

  41. Metsim: Proware, 4611 E. Blue Mountain Drive, Tucson, Arizona, AZ 85718.

  42. H.-J. Li and A.E. Morris: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 553–62.

    Article  CAS  Google Scholar 

  43. Plant Data from Elkem Metals Company, Marietta, OH, private communication, 1997.

  44. W. Bale, A.D. Pelton, and W.T. Thompson: F*A*C*T Thermodynamic Computing System (Facility for the Analysis of Chemical Thermodynamics), CRCT, Ecole Polytechnique, Montreal, 1995.

    Google Scholar 

  45. P.T. Carter and T.G. Macfarlane: J. Iron Steel Inst. (London), 1957, vol. 185, pp. 54–66.

    Google Scholar 

  46. R.A. Sharma and F.D. Richardson: J. Iron Steel Inst. (London), 1962, vol. 200, pp. 373–79.

    CAS  Google Scholar 

  47. Y. Omori and K. Sanbongi: J. Met. Inst. Jpn., 1961, vol. 25, pp. 139–41.

    CAS  Google Scholar 

  48. F.D. Richardson: Physical Chemistry of Metals, McGraw-Hill, New York, NY, 1953, pp. 77–95.

    Google Scholar 

  49. F.C. Fulton and J. Chipman: Trans. TMS-AIME, 1954, vol. 200, pp. 136–46.

    Google Scholar 

  50. K. Sawamura: Tetsu-to-Hagané Overseas, 1962, vol. 2, pp. 219–25.

    Google Scholar 

  51. R.H. Rein and J. Chipman: Trans. TMS-AIME, 1965, vol. 233, pp. 415–22.

    CAS  Google Scholar 

  52. D.A.R. Kay and J. Taylor: Trans. Faraday Soc., 1960, vol. 56, pp. 1372–86.

    Article  CAS  Google Scholar 

  53. K. Sanbongi and Y. Omori: Physical Chemistry of Metallic Solutions and Intermetallic Compounds, II, Her Majesties Stationery Office, London, 1959, pp. 373–79.

    Google Scholar 

  54. J. Chipman: Physical Chemistry of Process Metallurgy, Interscience Publications, New York, NY, 1961, p. 27.

    Google Scholar 

  55. R.A. Sharma and F.D. Richardson: J. Iron Steel Inst., 1961, vol. 198, pp. 386–90.

    CAS  Google Scholar 

  56. M. Rey: Physical Chemistry of Process Metallurgy, Gurney and Jackson, London, 1948, pp. 247–65.

    Google Scholar 

  57. L. Yang, C.L. McCabe, and R. Miller: in The Physical Chemistry of Steelmaking, J.F. Elliott, ed., MIT Press, Cambridge, MA, 1958, p. 63.

    Google Scholar 

  58. L.C. Chang and G. Derge: Trans. Am. Inst. Min. Metall. Eng., 1947, vol. 197, pp. 60–72.

    Google Scholar 

  59. K.P. Abraham, M.W. Davies, and F.D. Richardson: J. Iron Steel Inst., 1960, vol. 196, pp. 82–89.

    CAS  Google Scholar 

  60. S.R. Mehta and F.D. Richardson: J. Iron Steel Inst., 1965, vol. 203, pp. 524–28.

    CAS  Google Scholar 

  61. P.N. Smith and M.W. Davies: Trans. Inst. Min. Metall. Sect. C, 1971, vol. 80, pp. 87–95.

    Google Scholar 

  62. D.R. Gaskell: Metall. Trans., 1974, vol. 5, pp. 776–78.

    CAS  Google Scholar 

  63. B.K.D.P. Rao and D.R. Gaskell: Metall. Trans. B, 1981, vol. 12B, pp. 311–17.

    CAS  Google Scholar 

  64. N. Tiberg and A. Muan: Metall. Trans., 1970, vol. 1, pp. 435–39.

    CAS  Google Scholar 

  65. S. Raghavan, G.N.K. Iyengar, and K.P. Abraham: Trans. Ind. Inst. Met., 1980, vol. 3, p. 51.

    Google Scholar 

  66. T. Tsai and A. Muan: J. Am. Ceram. Soc., 1992, vol. 75, pp. 1472–75.

    Article  CAS  Google Scholar 

  67. E.T. Turkdogan: J. Iron Steel Inst., 1956, vol. 192, pp. 74–79.

    Google Scholar 

  68. Slag Atlas, Verein Deutscher Eisenhuttenleute, ed., Verlag Stahleisen MBH, Dusseldorf, 1981, p. 132, Figure 50.

    Google Scholar 

  69. V.H. Schenck and F. Neumann: Arch Eisenhuttenwes., 1960, vol. 31, p. 83.

    Google Scholar 

  70. E.W. Filer and L.S. Darken: Trans. AIME, 1952, vol. 194, pp. 253–57.

    Google Scholar 

  71. E.T. Turkdogan: Proc. Ethem. T. Turkdogan Symp., Iron and Steel Society, Warrendale, PA, 1994, pp. 253–69.

    Google Scholar 

  72. J.E. Stukel and J. Cocubinsky: TIME, 1954, vol. 200, p. 353.

    Google Scholar 

  73. R. Hurman Eric: University of the Witwatersrand, Johannesburg, South Africa, private communication, 1996.

  74. J.M. Steiler: Conf. on Physico-Chimie et Siderurgie, Poster Session, Versailles, Oct. 1978.

  75. E.T. Turkdogan: Physicochemical Properties of Molten Slags and Glasses, The Metals Society, London, 1983, p. 115.

    Google Scholar 

  76. “Monthly Operation Reports of Ferromanganese Smelting Furnace #12,” Elkem Metals Company, Marietta, GA, private communication, 1996, 1997.

  77. H.-J. Li, A.E. Morris, and D.G.C. Robertson: Proc. 54th Electric Furnace Conf., ISS, Warrendale, PA, 1996, pp. 227–35.

    Google Scholar 

  78. H.-J. Li and D.G.C. Robertson: Proc. 55th Electric Furnace Conf., ISS, Warrendale, PA, 1997, pp. 269–79.

    Google Scholar 

  79. V.G. Voskoboinikov, V.I. Varava, S.V. Brusenko, V.P. Osadskii, and N.I. Ovsyannikov: Stal’, 1987, No. 11, pp. 53–55.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Morris, A.E. & Robertson, D.G.C. Thermodynamic model for MnO-containing slags and gas-slag-metal equilibrium in ferromanganese smelting. Metall Mater Trans B 29, 1181–1191 (1998). https://doi.org/10.1007/s11663-998-0040-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-998-0040-z

Keywords

Navigation