Skip to main content
Log in

A Novel Way for Preparing Hexagonal-Shaped Mo2N by NH3 Reduction of Fe-Doped h-MoO3

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the work, the temperature-programmed reduction reaction between NH3 and h-MoO3 under different conditions was investigated in order to prepare Mo2N. Various technologies such as XRD, FESEM, and thermodynamic calculation were adopted to analyze the experimental data. The results demonstrated that the formation of Mo2N primarily involved two stages: the reduction of h-MoO3 to MoO2 and the nitridation of MoO2 to Mo2N. In the reduction stage, both NH3 and H2 acted as the reducing agents; while only NH3 acted as the nitridizing agent during the nitridation stage. The results also showed that when pure h-MoO3 was used, the resulting Mo2N exhibited an irregular granular morphology, differed significantly from the hexagonal structure of raw material. However, when Fe-doped h-MoO3 was used, the resulting Mo2N maintained the overall hexagonal shape with a loose and porous surface structure, which provided a new way for preparing hexagonal-shaped Mo2N. The possible mechanism of morphological evolution was also illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X. Xiao, H.M. Yu, H.Y. Jin, M.H. Wu, Y.S. Fang, J.Y. Sun, Z. Hu, T. Li, J. Wu, L. Huang, Y. Gogotsi, and J. Zhou: ACS Nano, 2017, vol. 11, pp. 2180–86.

    Article  CAS  PubMed  Google Scholar 

  2. M. Naguib and Y. Gogotsi: Acc. Chem. Res., 2015, vol. 48, pp. 128–35.

    Article  CAS  PubMed  Google Scholar 

  3. B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, and L. Hultman: ACS Nano, 2015, vol. 9, pp. 9507–16.

    Article  CAS  PubMed  Google Scholar 

  4. L. Ma, L.R.L. Ting, V. Molinari, C. Giordano, and B.S. Yeo: J. Mater. Chem. A, 2015, vol. 3, pp. 8361–68.

    Article  CAS  Google Scholar 

  5. Y.J. Song and Z.Y. Yuan: Electrochim. Acta, 2017, vol. 246, pp. 536–43.

    Article  CAS  Google Scholar 

  6. L.X. Wang, Z.H. Zhang, L. Li, L.S. Zhang, H. Fang, and X.F. Li: CIESC J., 2020, vol. 71, pp. 5854–62.

    CAS  Google Scholar 

  7. M. Kožejová, V. Latyshev, V. Kavecansky, H. You, S. Vorobiov, A. Kovalčíková, and V. Komanický: Electrochim. Acta, 2019, vol. 315, pp. 9–16.

    Article  Google Scholar 

  8. S.P. Zhang, Y. Yao, X.J. Jiao, M.Z. Ma, H.J. Huang, X.F. Zhou, L.F. Wang, J.T. Bai, and Y. Yu: Adv. Mater., 2021, vol. 33, p. 2103848.

    Google Scholar 

  9. F. Ma, K. Srinivas, X.J. Zhang, Z.H. Zhang, Y. Wu, D.W. Liu, W.L. Zhang, Q. Wu, and Y.F. Chen: Adv. Funct. Mater., 2022, vol. 32, p. 2206113.

    Article  CAS  Google Scholar 

  10. K. Wu, M.J. Zhu, Y. Yang, R.T. Tian, and F.X. Li: Chem. Bioeng., 2022, vol. 39, pp. 1–6.

    Google Scholar 

  11. Y.J. Jiang, M.Y. Zhao, P. Zhao, M.H. Lu, J. Zhu, M.S. Li, and Y.H. Shan: J. Chem. Eng. Chin. Univ., 2021, vol. 35, pp. 476–82.

    CAS  Google Scholar 

  12. X.R. Zhang, H. Peng, S.Y. Dong, L.M. Tang, Y. Zhang, and Y.G. Wu: J. Vac. Sci. Technol., 2022, vol. 42, pp. 185–92.

    Google Scholar 

  13. X.P. Liu, K.S. Wang, X.M. He, and P. Gu: Ordnance Mater. Sci. Eng., 2020, vol. 43, pp. 81–85.

    Google Scholar 

  14. H.B. Ju, L.H. Yu, and J.H. Xu: Chin. J. Vac. Sci. Technol., 2014, vol. 34, pp. 469–72.

    CAS  Google Scholar 

  15. C. Wang, Y.H. Wang, and X. Wu: Mater. Lett., 2021, vol. 287, p. 129292.1–91.

    Google Scholar 

  16. S.W. Wang, H.G. Gao, J.W. Xie, and L.X. Wang: Battery Bimonthly, 2020, vol. 50, pp. 450–53.

    CAS  Google Scholar 

  17. J.J. Yu, L. Wang, and Z.L. Xue: Ceram. Int., 2023, vol. 49, pp. 33135–46.

    Article  CAS  Google Scholar 

  18. D. Abdoulaye, J.B. Siegel, and A. Olabode: Nano Energy, 2018, vol. 51, pp. 122–27.

    Article  Google Scholar 

  19. S.L. Liu, J. Huang, and J. Liu: Mater. Lett., 2016, vol. 172, pp. 56–59.

    Article  CAS  Google Scholar 

  20. K. Dewangan, S.S. Patil, D.S. Joag, M.A. More, and N. Gajbhiye: J. Phys. Chem. C, 2010, vol. 114, pp. 14710–15.

    Article  CAS  Google Scholar 

  21. L. Wang, G.H. Zhang, and K.C. Chou: J. Solid State Chem., 2017, vol. 254, pp. 96–102.

    Article  CAS  Google Scholar 

  22. L. Wang, H.X. Li, and Z.L. Xue: Trans. Nonferrous Met. Soc. China, 2023, vol. 33, pp. 2155–67.

    Article  Google Scholar 

  23. H.X. Li, L. Wang, and F.J. Du: CrystEngComm, 2023, vol. 25, pp. 4089–99.

    Article  CAS  Google Scholar 

  24. Z.Q. Liu, H.X. Li, and L. Wang: China Molybdenum Industry, 2023, vol. 47, pp. 45–48.

    Google Scholar 

  25. G.D. Sun, G.H. Zhang, and K.C. Chou: J. Am. Ceram. Soc., 2018, vol. 101, pp. 2796–2808.

    Article  CAS  Google Scholar 

  26. C.W. Bale, E. Bélisle, and P. Chartrand: Calphad, 2009, vol. 33, p. 295.

    Article  CAS  Google Scholar 

  27. L. Wang, G.H. Zhang, and K.C. Chou: J. Am. Ceram. Soc., 2017, vol. 100, pp. 1368–76.

    Article  CAS  Google Scholar 

  28. L. Wang, G.H. Zhang, and Z.L. Xue: Chem. Lett., 2019, vol. 48, pp. 475–78.

    Article  CAS  Google Scholar 

  29. X. Song, W. Yi, J. Li, Q. Kong, H. Bai, and G. Xi: Nano Lett., 2021, vol. 21, pp. 4410–14.

    Article  CAS  PubMed  Google Scholar 

  30. A. Chithambararaj, N. Sanjini, S. Velmathi, and A.C. Bose: Phys. Chem. Chem. Phys., 2013, vol. 15, pp. 14761–69.

    Article  CAS  PubMed  Google Scholar 

  31. A. Chithambararaj, Y.N. Rajeswari, and A.C. Bose: Cryst. Growth Des., 2016, vol. 16, pp. 1984–95.

    Article  CAS  Google Scholar 

  32. L. Wang and G.H. Zhang: J. Phys. Chem. C, 2016, vol. 120, pp. 4097–4103.

    Article  CAS  Google Scholar 

  33. M.C. Li, L. Wang, and Z.L. Xue: Int. J. Refract. Hard. Met., 2023, vol. 116, p. 106358.

    Article  CAS  Google Scholar 

  34. H. Liang, X.B. Zha, and K.T. Gui: Proc. CSEE., 2014, vol. 34, pp. 5734–40.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support for this work from the National Natural Science Foundation of China (52104310). The authors would also like to thank the Analytical & Testing Center of Wuhan University of Science and Technology for the help on the FESEM micrographs analysis.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HX., Wang, L. & Xue, ZL. A Novel Way for Preparing Hexagonal-Shaped Mo2N by NH3 Reduction of Fe-Doped h-MoO3. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03099-x

Navigation