Skip to main content
Log in

Hetero-phase MoC-Mo2C nanoparticles for enhanced photocatalytic H2-production activity of TiO2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Hexagonal molybdenum carbide (Mo2C) as an effective non-noble cocatalyst is intensively researched in the photocatalytic H2-evolution field owing to its Pt-like H+-adsorption ability and good conductivity. However, hexagonal Mo2C-modified photocatalysts possess a limited H2-evolution rate because of the weak H-desorption ability. To further improve the activity, cubic MoC was introduced into Mo2C to form the carbon-modified MoC-Mo2C nanoparticles (MoC-Mo2C@C) by a calcination method. The resultant MoC-Mo2C@C (ca. 5 nm) was eventually coupled with TiO2 to acquire high-efficiency TiO2/MoC-Mo2C@C by electrostatic self-assembly. The highest H2-generation rate of TiO2/MoC-Mo2C@C reached of 918 μmol·h−1·g−1, which was 91.8, 2.7, and 1.5 times than that of the TiO2, TiO2/MoC@C, and TiO2/Mo2C@C, respectively. The enhanced rate of TiO2 attributes to the carbon layer as cocatalyst to transmit electrons and the hetero-phase MoC-Mo2C as H2-generation active sites to boost H2-evolution reaction. This research offers a novel insight to design photocatalytic materials for energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, J. F.; Liu, Y.; Liu, Y. P.; Huang, C.; Liu, W. H.; Mi, X. H.; Fan, D. Y.; Fan, F. T.; Lu, H. D.; Chen, X. B. SnS2 nanosheets/H-TiO2 nanotube arrays as a type II heterojunctioned photoanode for photoelectrochemical water splitting. ChemSusChem 2019, 12, 961–967.

    Article  CAS  Google Scholar 

  2. Wu, X. H.; Gao, D. D.; Wang, P.; Yu, H. G.; Yu, J. G. NH4Cl-induced low-temperature formation of nitrogen-rich g-C3N4 nanosheets with improved photocatalytic hydrogen evolution. Carbon 2019, 153, 757–766.

    Article  CAS  Google Scholar 

  3. Zhong, W.; Wu, X. H.; Wang, P.; Fan, J. J.; Yu, H. G. Homojunction CdS photocatalysts with a massive S2−-adsorbed surface phase: One-step facile synthesis and high H2-evolution performance. ACS Sustainable Chem. Eng. 2020, 8, 543–551.

    Article  CAS  Google Scholar 

  4. Zhao, Y.; Shao, C. T.; Lin, Z. X.; Jiang, S. J.; Song, S. Q. Low-energy facets on CdS allomorph junctions with optimal phase ratio to boost charge directional transfer for photocatalytic H2 fuel evolution. Small 2020, 16, 2000944.

    Article  CAS  Google Scholar 

  5. Shen, J. X.; Li, Y. Z.; Zhao, H. Y.; Pan, K.; Li, X.; Qu, Y.; Wang, G. F.; Wang, D. S. Modulating the photoelectrons of g-C3N4 via coupling MgTi2O5 as appropriate platform for visible-light-driven photocatalytic solar energy conversion. Nano Res. 2019, 12, 1931–1936.

    Article  CAS  Google Scholar 

  6. Wang, X. S.; Zhou, C.; Shi, R.; Liu, Q. Q.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. Nano Res. 2019, 12, 2385–2389.

    Article  CAS  Google Scholar 

  7. Sun, R.; Zhang, Z. Q.; Li, Z. J.; Jing, L. Q. Review on photogenerated hole modulation strategies in photoelectrocatalysis for solar fuel production. ChemCatChem 2019, 11, 5875–5884.

    Article  CAS  Google Scholar 

  8. Wang, H.; Hu, X. T.; Ma, Y. J.; Zhu, D. J.; Li, T.; Wang, J. Y. Nitrate-group-grafting-induced assembly of rutile TiO2 nanobundles for enhanced photocatalytic hydrogen evolution. Chin. J. Catal. 2020, 41, 95–102.

    Article  CAS  Google Scholar 

  9. Xiang, Q. J.; Ma, X. Y.; Zhang, D. N.; Zhou, H. P.; Liao, Y. L.; Zhang, H. W.; Xu, S. Y.; Levchenko, I.; Bazaka, K. Interfacial modification of titanium dioxide to enhance photocatalytic efficiency towards H2 production. J. Colloid Interface Sci. 2019, 556, 376–385.

    Article  CAS  Google Scholar 

  10. Li, J.; Zhang, M.; Li, X.; Li, Q. Y.; Yang, J. J. Effect of the calcination temperature on the visible light photocatalytic activity of direct contact Z-scheme g-C3N4-TiO2 heterojunction. Appl. Catal. B 2017, 212, 106–114.

    Article  CAS  Google Scholar 

  11. Qiu, X. Q.; Miyauchi, M.; Sunada, K.; Minoshima, M.; Liu, M.; Lu, Y.; Li, D.; Shimodaira, Y.; Hosogi, Y.; Kuroda, Y. et al. Hybrid CuxO/TiO2 nanocomposites as risk-reduction materials in indoor environments. ACS Nano 2012, 6, 1609–1618.

    Article  CAS  Google Scholar 

  12. Liu, L. F.; Zhang, J. L.; Tan, X. N.; Zhang, B. X.; Shi, J. B.; Cheng, X. Y.; Tan, D. X.; Han, B. X.; Zheng, L. R.; Zhang, F. Y. Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. Nano Res. 2020, 13, 983–988.

    Article  CAS  Google Scholar 

  13. Shi, Q. Q.; Qin, Z. X.; Yu, C. L.; Waheed, A.; Xu, H.; Gao, Y.; Abroshan, H.; Li, G. Experimental and mechanistic understanding of photo-oxidation of methanol catalyzed by CuO/TiO2-spindle nanocomposite: Oxygen vacancy engineering. Nano Res. 2020, 13, 939–946.

    Article  CAS  Google Scholar 

  14. Liu, Y. Y.; Xiang, Z. H. Fully conjugated covalent organic polymer with carbon-encapsulated Ni2P for highly sustained photocatalytic H2 production from seawater. ACS Appl. Mater. Interfaces 2019, 11, 41313–41320.

    Article  CAS  Google Scholar 

  15. Yue, X. Z.; Li, C. Q.; Liu, Z. Y.; Yi, S. S.; Chen, D. L.; Wang, F.; Li, S. H. Steering charge kinetics in W2C@C/TiO2 heterojunction architecture: Efficient solar-light-driven hydrogen generation. Appl. Catal. B 2019, 255, 117760.

    Article  CAS  Google Scholar 

  16. He, C. H.; Yu, L. L.; Lu, N.; Wang, W. J.; Chen, W.; Lu, S. J.; Yang, Y.; Ma, D. K.; Huang, S. M. Screwdriver-like Pd-Ag heterostructures formed via selective deposition of Ag on Pd nanowires as efficient photocatalysts for solvent-free aerobic oxidation of toluene. Nano Res. 2020, 13, 646–652.

    Article  CAS  Google Scholar 

  17. Cheng, L.; Zhang, D. N.; Liao, Y. L.; Li, F.; Zhang, H. W.; Xiang, Q. J. Constructing functionalized plasmonic gold/titanium dioxide nanosheets with small gold nanoparticles for efficient photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2019, 555, 94–103.

    Article  CAS  Google Scholar 

  18. Li, C.; Wang, X. P.; Cheruvathur, A.; Shen, Y. B.; Xiang, H. W.; Li, Y. W.; Niemantsverdriet, J. W.; Su, R. In-situ probing photocatalytic C-C bond cleavage in ethylene glycol under ambient conditions and the effect of metal cocatalyst. J. Catal. 2018, 365, 313–319.

    Article  CAS  Google Scholar 

  19. Tan, X. N.; Zhang, J. L.; Tan, D. X.; Shi, J. B.; Cheng, X. Y.; Zhang, F. Y.; Liu, L. F.; Zhang, B. X.; Su, Z. Z.; Han, B. X. Ionic liquids produce heteroatom-doped Pt/TiO2 nanocrystals for efficient photocatalytic hydrogen production. Nano Res. 2019, 12, 1967–1972.

    Article  Google Scholar 

  20. Gan, X. R.; Lei, D. Y.; Ye, R. Q.; Zhao, H. M.; Wong, K. Y. Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: Dimensionality and interface engineering. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-020-2955-x.

  21. Zhang, H. B.; Zhang, P.; Qiu, M.; Dong, J. C.; Zhang, Y. F.; Lou, X. W. D. Ultrasmall MoOx clusters as a novel cocatalyst for photocatalytic hydrogen evolution. Adv. Mater. 2019, 31, 1804883.

    Google Scholar 

  22. Mu, R. H.; Ao, Y. H.; Wu, T. F.; Wang, C.; Wang, P. F. Synergistic effect of molybdenum nitride nanoparticles and nitrogen-doped carbon on enhanced photocatalytic hydrogen evolution performance of CdS nanorods. J. Alloys Compd. 2020, 812, 151990.

    Article  CAS  Google Scholar 

  23. Wang, J. F.; Chen, J.; Wang, P. F.; Hou, J.; Wang, C.; Ao, Y. H. Robust photocatalytic hydrogen evolution over amorphous ruthenium phosphide quantum dots modified g-C3N4 nanosheet. Appl. Catal. B 2018, 239, 578–585.

    Article  CAS  Google Scholar 

  24. Yang, H. Z.; Wang, X. Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv. Mater. 2019, 31, 1800743.

    Article  CAS  Google Scholar 

  25. Chu, X. Y.; Qu, Y.; Zada, A.; Bai, L. L.; Li, Z. J.; Yang, F.; Zhao, L.; Zhang, G. L.; Sun, X. J.; Yang, Z. D. et al. Ultrathin phosphate-modulated co phthalocyanine/g-C3N4 heterojunction photocatalysts with single Co-N4 (II) sites for efficient O2 activation. Adv. Sci. 2020, 7, 2001543.

    Article  CAS  Google Scholar 

  26. Song, Y. H.; Xia, K. X.; Gong, Y. M.; Chen, H. X.; Li, L.; Yi, J. J.; She, X. J.; Chen, Z. G.; Wu, J. J.; Li, H. M. et al. Controllable synthesized heterostructure photocatalyst Mo2C@C/2D g-C3N4: Enhanced catalytic performance for hydrogen production. Dalton Trans. 2018, 47, 14706–14712.

    Article  CAS  Google Scholar 

  27. Zang, X. N.; Chen, W. S.; Zou, X. L.; Hohman, J. N.; Yang, L. J.; Li, B. X.; Wei, M. S.; Zhu, C. H.; Liang, J. M.; Sanghadasa, M. et al. Self-assembly of large-area 2D polycrystalline transition metal carbides for hydrogen electrocatalysis. Adv. Mater. 2018, 30, 1805188.

    Article  CAS  Google Scholar 

  28. Xiong, J.; Li, J.; Shi, J. W.; Zhang, X. L.; Suen, N. T.; Liu, Z.; Huang, Y. J.; Xu, G. X.; Cai, W. W.; Lei, X. R. et al. In situ engineering of double-phase interface in Mo/Mo2C heteronanosheets for boosted hydrogen evolution reaction. ACS Energy Lett. 2018, 3, 341–348.

    Article  CAS  Google Scholar 

  29. Fu, W. W.; Wang, Y. W.; Hu, J. S.; Zhang, H. J.; Luo, P.; Sun, F.; Ma, X. G.; Huang, Z. Y.; Li, J.; Guo, Z. P. et al. Surface-electron coupling for efficient hydrogen evolution. Angew. Chem., Int. Ed. 2019, 58, 17709–17717.

    Article  CAS  Google Scholar 

  30. Huang, C.; Miao, X. W.; Pi, C. R.; Gao, B.; Zhang, X. M.; Qin, P.; Huo, K. F.; Peng, X.; Chu, P. K. Mo2C/VC heterojunction embedded in graphitic carbon network: An advanced electrocatalyst for hydrogen evolution. Nano Energy 2019, 60, 520–526.

    Article  CAS  Google Scholar 

  31. Xiong, T. L.; Jia, J.; Wei, Z. Q.; Zeng, L. L.; Deng, Y. Q.; Zhou, W. J.; Chen, S. W. N-doped carbon-wrapped MoxC heterophase sheets for high-efficiency electrochemical hydrogen production. Chem. Eng. J. 2019, 358, 362–368.

    Article  CAS  Google Scholar 

  32. Lin, H. L.; Shi, Z. P.; He, S.; Yu, X.; Wang, S. N.; Gao, Q. S.; Tang, Y. Heteronanowires of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem. Sci. 2016, 7, 3399–3405.

    Article  CAS  Google Scholar 

  33. Zhang, X. Y.; Wang, J. C.; Guo, T.; Liu, T. Y.; Wu, Z. Z.; Cavallo, L.; Cao, Z.; Wang, D. Z. Structure and phase regulation in MoxC (α-MoC1−x/β-Mo2C) to enhance hydrogen evolution. Appl. Catal. B 2019, 247, 78–85.

    Article  CAS  Google Scholar 

  34. Lu, X. F.; Yu, L.; Zhang, J. T.; Lou, X. W. D. Ultrafine dual-phased carbide nanocrystals confined in porous nitrogen-doped carbon dodecahedrons for efficient hydrogen evolution reaction. Adv. Mater. 2019, 31, 1900699.

    Article  CAS  Google Scholar 

  35. Kim, S.; Choi, C.; Hwang, J.; Park, J.; Jeong, J.; Jun, H.; Lee, S.; Kim, S. K.; Jang, J. H.; Jung, Y. et al. Interaction mediator assisted synthesis of mesoporous molybdenum carbide: Mo-valence state adjustment for optimizing hydrogen evolution. ACS Nano 2020, 14, 4988–4999.

    Article  CAS  Google Scholar 

  36. Liu, J. F.; Wang, P.; Fan, J. J.; Yu, H. G. Carbon-coated cubic-phase molybdenum carbide nanoparticle for enhanced photocatalytic H2-evolution performance of TiO2. J. Energy Chem. 2020, 51, 253–261.

    Article  Google Scholar 

  37. Wang, P.; Sheng, Y.; Wang, F. Z.; Yu, H. G. Synergistic effect of electron-transfer mediator and interfacial catalytic active-site for the enhanced H2-evolution performance: A case study of CdS-Au photocatalyst. Appl. Catal. B 2018, 220, 561–569.

    Article  CAS  Google Scholar 

  38. Wang, C. L.; Sun, L. S.; Zhang, F. F.; Wang, X. X.; Sun, Q. J.; Cheng, Y.; Wang, L. M. Formation of Mo-polydopamine hollow spheres and their conversions to MoO2/C and Mo2C/C for efficient electrochemical energy storage and catalyst. Small 2017, 13, 1701246.

    Article  CAS  Google Scholar 

  39. Song, H. J.; Sung, M. C.; Yoon, H.; Ju, B.; Kim, D. W. Ultrafine α-phase molybdenum carbide decorated with platinum nanoparticles for efficient hydrogen production in acidic and alkaline media. Adv. Sci. 2019, 6, 1802135.

    Article  CAS  Google Scholar 

  40. Wang, Q. L.; Li, H. Y.; Yang, J. H.; Sun, Q.; Li, Q. Y.; Yang, J. J. Iron phthalocyanine-graphene donor-acceptor hybrids for visible-light-assisted degradation of phenol in the presence of H2O2. Appl. Catal. B 2016, 192, 182–192.

    Article  CAS  Google Scholar 

  41. Wang, Q. L.; Tao, L. M.; Jiang, X. X.; Wang, M. K.; Shen, Y. Graphene oxide wrapped CH3NH3PbBr3 perovskite quantum dots hybrid for photoelectrochemical CO2 reduction in organic solvents. Appl. Surf. Sci. 2019, 465, 607–613.

    Article  CAS  Google Scholar 

  42. Gao, F.; Zhao, Y.; Zhang, L. L.; Wang, B.; Wang, Y. Z.; Huang, X. Y.; Wang, K. Q.; Feng, W. H.; Liu, P. Well dispersed MoC quantum dots in ultrathin carbon films as efficient co-catalysts for photocatalytic H2 evolution. J. Mater. Chem. A 2018, 6, 18979–18986.

    Article  CAS  Google Scholar 

  43. Yue, X. Z.; Yi, S. S.; Wang, R. W.; Zhang, Z. T.; Qiu, S. L. A novel architecture of dandelion-like Mo2C/TiO2 heterojunction photocatalysts towards high-performance photocatalytic hydrogen production from water splitting. J. Mater. Chem. A 2017, 5, 10591–10598.

    Article  CAS  Google Scholar 

  44. Wan, C.; Regmi, Y. N.; Leonard, B. M. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 6407–6410.

    Article  CAS  Google Scholar 

  45. Yu, H. G.; Yuan, R. R.; Gao, D. D.; Xu, Y.; Yu, J. G. Ethyl acetate-induced formation of amorphous MoSx nanoclusters for improved H2-evolution activity of TiO2 photocatalyst. Chem. Eng. J. 2019, 375, 121934.

    Article  CAS  Google Scholar 

  46. Pan, Y. X.; Peng, J. B.; Xin, S.; You, Y.; Men, Y. L.; Zhang, F.; Duan, M. Y.; Cui, Y.; Sun, Z. Q.; Song, J. Enhanced visible-light-driven photocatalytic H2 evolution from water on noble-metal-free CdS-nanoparticle-dispersed Mo2C@C nanospheres. ACS Sustainable Chem. Eng. 2017, 5, 5449–5456.

    Article  CAS  Google Scholar 

  47. Wang, P.; Xu, S. Q.; Chen, F.; Yu, H. G. Ni nanoparticles as electron-transfer mediators and NiSx as interfacial active sites for coordinative enhancement of H2-evolution performance of TiO2. Chin. J. Catal. 2019, 40, 343–351.

    Article  CAS  Google Scholar 

  48. Yu, H. G.; Liu, W. J.; Wang, X. F.; Wang, F. Z. Promoting the interfacial H2-evolution reaction of metallic Ag by Ag2S cocatalyst: A case study of TiO2/Ag-Ag2S photocatalyst. Appl. Catal. B 2018, 225, 415–423.

    Article  CAS  Google Scholar 

  49. Li, J.; Li, Y.; Zhang, G. K.; Huang, H. X.; Wu, X. Y. One-dimensional/two-dimensional core-shell-structured Bi2O4/BiO2−x heterojunction for highly efficient broad spectrum light-driven photocatalysis: Faster interfacial charge transfer and enhanced molecular oxygen activation mechanism. ACS Appl. Mater. Interfaces 2019, 11, 7112–7122.

    Article  CAS  Google Scholar 

  50. Lu, X. X.; Toe, C. Y.; Ji, F.; Chen, W. J.; Wen, X. M.; Wong, R. J.; Seidel, J.; Scott, J.; Hart, J. N.; Ng, Y. H. Light-induced formation of MoOxSy, clusters on CdS nanorods as cocatalyst for enhanced hydrogen evolution. ACS Appl. Mater. Interfaces 2020, 12, 8324–8332.

    Article  CAS  Google Scholar 

  51. Yi, S. S.; Yan, J. M.; Wulan, B. R.; Jiang, Q. Efficient visible-light-driven hydrogen generation from water splitting catalyzed by highly stable CdS@Mo2C-C core-shell nanorods. J. Mater. Chem. A 2017, 5, 15862–15868.

    Article  CAS  Google Scholar 

  52. Yang, X.; Tao, H. L.; Leow, W. R.; Li, J. J.; Tan, Y. X.; Zhang, Y. F.; Zhang, T.; Chen, X. D.; Gao, S. Y.; Cao, R. Oxygen-vacancies-engaged efficient carrier utilization for the photocatalytic coupling reaction. Chin. J. Catal. 2019, 373, 116–125.

    Article  CAS  Google Scholar 

  53. Li, Y.; Wang, X. Y.; Gong, J.; Xie, Y. H.; Wu, X. Y.; Zhang, G. K. Graphene-based nanocomposites for efficient photocatalytic hydrogen evolution: Insight into the interface toward separation of photogenerated charges. ACS Appl. Mater. Interfaces 2018, 10, 43760–43767.

    Article  CAS  Google Scholar 

  54. Wang, K.; Li, Y.; Li, J.; Zhang, G. K. Boosting interfacial charge separation of Ba5Nb4O15/g-C3N4 photocatalysts by 2D/2D nanojunction towards efficient visible-light driven H2 generation. Appl. Catal. B 2020, 263, 117730.

    Article  CAS  Google Scholar 

  55. Gao, D. D.; Wu, X. H.; Wang, P.; Xu, Y.; Yu, H. G.; Yu, J. G. Simultaneous realization of direct photoinduced deposition and improved H2-evolution performance of Sn-nanoparticle-modified TiO2 photocatalyst. ACS Sustainable Chem. Eng. 2019, 7, 10084–10094.

    Article  CAS  Google Scholar 

  56. Gao, D. D.; Liu, W. J.; Xu, Y.; Wang, P.; Fan, J. J.; Yu, H. G. Core-shell Ag@Ni cocatalyst on the TiO2 photocatalyst: One-step photoinduced deposition and its improved H2-evolution activity. Appl. Catal. B 2020, 260, 118190.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51872221 and 21771142) and the Fundamental Research Funds for the Central Universities (No. WUT 2019IB002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Wang or Huogen Yu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, P., Fan, J. et al. Hetero-phase MoC-Mo2C nanoparticles for enhanced photocatalytic H2-production activity of TiO2. Nano Res. 14, 1095–1102 (2021). https://doi.org/10.1007/s12274-020-3156-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3156-3

Keywords

Navigation