Skip to main content
Log in

Preparation of Mo2C by reducing ultrafine spherical β-MoO3 powders with CO or CO-CO2 gases

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The reaction of ultrafine spherical β-MoO3 powders with CO or the mixed CO-CO2 gases by the temperature-programmed reaction (TPR) method is investigated in order to produce Mo2C. From the experimental results, it is concluded that the reaction process between MoO3 and CO is composed of two stages: the reduction of MoO3 to MoO2 and the carburization from MoO2 to Mo2C. Mo4O11 as an intermediate product is formed during the first reduction stage (from MoO3 to MoO2), which is similar to the reduction process of MoO3 to MoO2 by H2. The product Mo2C always keeps the same platelet-shaped morphology as that of MoO2. In addition, it is found that adding a certain proportion of CO2 into the reducing gases has a large inhibiting effect on the carbon deposition reaction of CO, which is beneficial for the preparation of pure Mo2C. However, if the proportion of CO2 is too high, Mo2C cannot be obtained and the product will turn to be MoO2 instead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Levy, R., Boudart, M.: Platinum-like behavior of tungsten carbide in surface catalysis. Science. 181, 547–549 (1973)

    Article  Google Scholar 

  2. Torabi, O., Golabgir, M.H., Tajizadegan, H., Torabi, H.: A study on mechanochemical behavior of MoO3-Mg-C to synthesize molybdenum carbide. Int J Refract Met Hard Mater. 47, 18–24 (2014)

    Article  Google Scholar 

  3. Volpe, L., Boudart, M.: Compounds of molybdenum and tungsten with high specific surface area: I. Nitrides J Solid State Chem. 59(3), 332–347 (1985)

    Article  Google Scholar 

  4. Chaudhury, S., Mukerjee, S., Vaidya, V., Venugopal, V.: Kinetics and mechanism of carbothermic reduction of MoO3 to Mo2C. J Alloy Compd. 261, 105–113 (1997)

    Article  Google Scholar 

  5. Dhandapani, B., Clair, T.S., Oyama, S.: Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide. Appl Catal. 168(2), 219–228 (1998)

    Article  Google Scholar 

  6. Choi, J.G., Brenner, J.R., Thompson, L.T.: Pyridine hydrodenitrogenation over molybdenum carbide catalysts. J Catal. 154(1), 33–40 (1995)

    Article  Google Scholar 

  7. Markel, E., Van, Z.J.: Catalytic hydrodesulfurization by molybdenum nitride. J Catal. 126(2), 643–657 (1990)

    Article  Google Scholar 

  8. Ranhotra, G., Bell, A., Reimer, J.: Catalysis over molybdenum carbides and nitrides: II. Studies of CO hydrogenation and C2H6 hydrogenolysis. J Catal. 108(1), 40–49 (1987)

    Article  Google Scholar 

  9. Vo, D.V.N., Adesina, A.A.: Fischer–Tropsch synthesis over alumina-supported molybdenum carbide catalyst. Appl Catal. 399(1), 221–232 (2011)

    Article  Google Scholar 

  10. Park, K.Y., Seo, W.K., Lee, J.S.: Selective synthesis of light olefins from syngas over potassium-promoted molybdenum carbide catalysts. Catal Lett. 11(3), 349–356 (1991)

    Article  Google Scholar 

  11. Keller, V., Wehrer, P., Garin, F., Ducros, R., Maire, G.: Catalytic activity of bulk tungsten carbides for alkane reforming: I. Characterization and catalytic activity for reforming of hexane isomers in the absence of oxygen. J Catal. 153(1), 9–16 (1995)

    Article  Google Scholar 

  12. Brungs, A.J., York, A.P., Green, M.L.: Comparison of the group V and VI transition metal carbides for methane dry reforming and thermodynamic prediction of their relative stabilities. Catal Lett. 57(1), 65–69 (1999)

    Article  Google Scholar 

  13. Brungs, A.J., York, A.P., Claridge, J.B., Márquez-Alvarez, C., Green, M.L.: Dry reforming of methane to synthesis gas over supported molybdenum carbide catalysts. Catal Lett. 70(3), 117–122 (2000)

    Article  Google Scholar 

  14. LaMont, D.C., Thomson, W.J.: Dry reforming kinetics over a bulk molybdenum carbide catalyst. Chem Eng Sci. 60(13), 3553–3559 (2005)

    Article  Google Scholar 

  15. York, A.E., Claridge, J., Brungs, A., Tsang, S., Green, M.H.: Molybdenum and tungsten carbides as catalysts for the conversion of methane to synthesis gas using stoichiometric feedstocks. Chem Commun. 1, 39–40 (1997)

    Article  Google Scholar 

  16. Bouchy, C., SBD-A, H., Derouane, E.G.: A new route to the metastable FCC molybdenum carbide α-MoC1 − x. Chem Commun. 2, 125–126 (2000)

    Article  Google Scholar 

  17. Volpe, L., Boudart, M.: Compounds of molybdenum and tungsten with high specific surface area: II. Carbides J Solid State Chem. 59(3), 348–356 (1985)

    Article  Google Scholar 

  18. Xiao, T., York, A.P., Coleman, K.S., Claridge, J.B., Sloan, J., Charnock, J., Green, M.L.: Effect of carburising agent on the structure of molybdenum carbides. J Mater Chem. 11(12), 3094–3098 (2001)

    Article  Google Scholar 

  19. Xiao, T.C., York, A.P., Williams, V.C., Al-Megren, H., Hanif, A., Zhou, X.Y., Green, M.L.: Preparation of molybdenum carbides using butane and their catalytic performance. Chem Mater. 12(12), 3896–3905 (2000)

    Article  Google Scholar 

  20. Hanif, A., Xiao, T., York, A.P., Sloan, J., Green, M.L.: Study on the structure and formation mechanism of molybdenum carbides. Chem Mater. 14(3), 1009–1015 (2002)

    Article  Google Scholar 

  21. Wang, X.H., Hao, H.L., Zhang, M.H., Li, W., Tao, K.Y.: Synthesis and characterization of molybdenum carbides using propane as carbon source. J Solid State Chem. 179(2), 538–543 (2006)

    Article  Google Scholar 

  22. Liang, C., Ying, P., Li, C.: Nanostructured β-Mo2C prepared by carbothermal hydrogen reduction on ultrahigh surface area carbon material. Chem Mater. 14(7), 3148–3151 (2002)

    Article  Google Scholar 

  23. Mordenti, D., Brodzki, D., Djéga, M.G.: New synthesis of Mo2C 14 nm in average size supported on a high specific surface area carbon material. J Solid State Chem. 141(1), 114–120 (1998)

    Article  Google Scholar 

  24. Yang, Z., Cai, P., Shi, L., Gu, Y., Chen, L., Qian, Y.: A facile preparation of nanocrystalline Mo2C from graphite or carbon nanotubes. J Solid State Chem. 179(1), 29–32 (2006)

    Article  Google Scholar 

  25. Patel, M., Subrahmanyam, J.: Synthesis of nanocrystalline molybdenum carbide (Mo2C) by solution route. Mater Res Bull. 43(8), 2036–2041 (2008)

    Article  Google Scholar 

  26. Wang, H., Wang, Z., Chen, S.: Preparation of molybdenum carbides with multiple morphologies using surfactants as carbon sources. J Solid State Chem. 194, 19–22 (2012)

    Article  Google Scholar 

  27. Khabbaz, S., Honarbakhsh, R.A., Ataie, A., Saghafi, M.: Effect of processing parameters on the mechanochemical synthesis of nanocrystalline molybdenum carbide. Int J Refract Met Hard Mater. 41, 402–407 (2013)

    Article  Google Scholar 

  28. Hoseinpur, A., Jalaly, M., Bafghi, M.S., Khaki, J.V.: On the formation of Mo2C nanocrystals by a novel system through microwave assisted combustion synthesis. Mater Charact. 108, 79–84 (2015)

    Article  Google Scholar 

  29. Vitale, G., Guzmán, H., Frauwallner, M.L., Scott, C.E., Pereira, A.P.: Synthesis of nanocrystalline molybdenum carbide materials and their characterization. Cataly Today. 250, 123–133 (2015)

    Article  Google Scholar 

  30. Dang, J., Zhang, G.H., Wang, L., Chou, K.C., Pistorius, P.C.: Study on reduction of MoO2 powders with CO to produce Mo2C. J Am Ceram Soc. 99(3), 819–824 (2016)

    Article  Google Scholar 

  31. Wang, Z.Q., Zhang, Z.B., Zhang, M.H.: The efficient synthesis of a molybdenum carbide catalyst via H2-thermal treatment of a Mo(vi)-hexamethylenetetramine complex. Dalton Trans. 40(5), 1098–1104 (2011)

    Article  Google Scholar 

  32. Lemaître, J., Vidick, B., Delmon, B.: Control of the catalytic activity of tungsten carbides: I. Preparation of highly dispersed tungsten carbides. J Catal. 99(2), 415–427 (1986)

    Article  Google Scholar 

  33. Alonso, F.N., Morales, M.Z., Salas, A.U., Becerril, J.B.: Tungsten trioxide reduction-carburization with carbon monoxide-carbon dioxide mixtures: kinetics and thermodynamics. Int J Miner Process. 20, 137–151 (1987)

    Article  Google Scholar 

  34. Valendar, H.M., Yu, D., Barati, M., Rezaie, H.: Isothermal kinetics of reduction and carburization of WO3–NiO nanocomposite powder by CO/CO2. J Therm Anal Calorim. 128(1), 553–566 (2017)

    Article  Google Scholar 

  35. Wang, L., Zhang, G.H., Sun, Y.J., Zhou, X.W., Chou, K.C.: Preparation of ultrafine β-MoO3 from industrial grade MoO3 powder by the method of sublimation. J Phys Chem C. 120(35), 19821–19829 (2016)

    Article  Google Scholar 

  36. Wang, L., Zhang, G.H., Chou, K.C.: Preparation of single-crystal spherical γ-Mo2N by temperature-programmed reaction between β-MoO3 and NH3. J Solid State Chem. 254, 96–102 (2017)

    Article  Google Scholar 

  37. McCarron, E.: β-MoO3: a metastable analogue of WO3. J Chem Soc Chem Commun. 4(4), 336–338 (1986)

    Article  Google Scholar 

  38. Sayede, A., Amriou, T., Pernisek, M., Khelifa, B., Mathieu, C.: An ab initio LAPW study of the α and β phases of bulk molybdenum trioxide, MoO3. Chem Phys. 316(1), 72–82 (2005)

    Article  Google Scholar 

  39. Phuc, N.H.H., Ohkita, H., Mizushima, T., Kakuta, N.: Simple method to prepare new structure of metastable molybdenum (VI) oxide. Mater Lett. 76, 173–176 (2012)

    Article  Google Scholar 

  40. Dang, J., Zhang, G.H., Chou, K.C.: Phase transitions and morphology evolutions during hydrogen reduction of MoO3 to MoO2. High Temp Mater Process. 51, 275–281 (2014)

    Google Scholar 

  41. Wang, L., Zhang, G.H., Chou, K.C.: Mechanism and kinetic study of hydrogen reduction of ultra-fine spherical MoO3 to MoO2. Int J Refract Met Hard Mater. 54, 342–350 (2016)

    Article  Google Scholar 

  42. Ma, L., Ting, L.R.L., Molinari, V., Giordano, C., Yeo, B.S.: Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J Mater Chem A. 3(16), 8361–8368 (2015)

    Article  Google Scholar 

  43. Dang, J., Zhang, G.H., Chou, K.C., Reddy, R.G., He, Y., Sun, Y.J.: Kinetics and mechanism of hydrogen reduction of MoO3 to MoO2. Int J Refract Met Hard Mater. 41, 216–223 (2013)

    Article  Google Scholar 

  44. Schulmeyer, W.V., Ortner, H.M.: Mechanisms of the hydrogen reduction of molybdenum oxides. Int J Refract Met Hard Mater. 20(4), 261–269 (2002)

    Article  Google Scholar 

  45. Bale, C., Chartrand, P., Degterov, S., Eriksson, G., Hack, K., Mahfoud, R.B., Melançon, J., Pelton, A., Petersen, S.: FactSage thermochemical software and databases. Calphad. 26(2), 189–228 (2002)

    Article  Google Scholar 

  46. Utigard, T.: Oxidation mechanism of molybdenite concentrate. Metall Mater Trans B Process Metall Mater Process Sci. 40(4), 490–496 (2009)

    Article  Google Scholar 

  47. Wang, L., Zhang, G.H., Chou, K.C.: Study on oxidation mechanism and kinetics of MoO2 to MoO3 in air atmosphere. Int J Refract Met Hard Mater. 57, 115–124 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (U1460201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Hua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, GH. & Chou, KC. Preparation of Mo2C by reducing ultrafine spherical β-MoO3 powders with CO or CO-CO2 gases. J Aust Ceram Soc 54, 97–107 (2018). https://doi.org/10.1007/s41779-017-0131-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-017-0131-x

Keywords

Navigation