Skip to main content
Log in

Atomic-Scale Investigation on the Formation of MgAl2O4–MnS Inclusions in 304 Stainless Steel Based on Multi-scale Characterization and First-Principle Calculation

  • Topical Collection: 2023 Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Inclusions in steel have an important effect on steel properties. Al2O3 is a common inclusion in steel, resulting in stress concentration in steel products. Mg treatments can transform Al2O3 into small and dispersed MgAl2O4 inclusions, which can serve as the nucleation center for MnS to form MgAl2O4–MnS composite inclusions. In this study, based on multi-scale characterization of the chemical composition, phase, and structure of the interface of the MgAl2O4–MnS composite inclusions, the mechanism of the formation of MgAl2O4–MnS composite inclusions was revealed by first-principles calculations. Firstly, the chemical composition, morphology, and crystal structures of the composite inclusions were determined by scanning electron microscope and energy dispersive spectrometer (SEM-EDS) and X-ray diffraction (XRD). Secondly, the MgAl2O4–MnS inclusions were micro-sectioned by SEM and focus ions beam (FIB) to explore their interface. The high-resolution transmission electron microscopy (HTEM) analysis showed that the orientation relationship between MgAl2O4 and MnS was MgAl2O4 (111)//MnS (200). Finally, the electronic structures and adsorption energy of the atoms of Mn and S on the low exponential structures ((100), (110), and (111)) of MgAl2O4 with different initial positions were investigated by first principles. It is determined that the most stable adsorption structure can be obtained following the path of adsorbing Mn first and then S on the (111) surface of MgAl2O4. The characterization from multi-scale revealed the formation mechanism of MgAl2O4–MnS composite inclusion. The theoretical calculation and the experimental results are in good agreement.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. M. Hojo, R. Nakao, T. Umezaki, et al.: ISIJ Int., 1996, vol. 36, pp. S128–31. https://doi.org/10.2355/isijinternational.36.Suppl_S128.

    Article  Google Scholar 

  2. H. Shibata, H. Yin, S. Yoshinaga, et al.: ISIJ Int., 1998, vol. 38(2), pp. 149–56. https://doi.org/10.2355/isijinternational.38.149.

    Article  CAS  Google Scholar 

  3. M. Wang, W. Xiao, P. Gan, et al.: Metals, 2020, vol. 10(2), p. 201. https://doi.org/10.3390/met10020201.

    Article  CAS  Google Scholar 

  4. J.H. Park and Y. Kang: Steel Res. Int., 2017, vol. 88(12), p. 1700130. https://doi.org/10.1002/srin.201700130.

    Article  CAS  Google Scholar 

  5. M. Nishimoto, I. Muto, Y. Sugawara, et al.: Corros. Sci., 2020, vol. 176, 109060https://doi.org/10.1016/j.corsci.2020.109060.

    Article  CAS  Google Scholar 

  6. T. Ping, Y. Hao, H. Daofeng, et al.: Iron Steel, 2011, vol. 46(1), pp. 45–48. https://doi.org/10.1016/S1872-2040(10)60412-4.

    Article  Google Scholar 

  7. H. Wang, J. Li, and C. Shi: Ironmak. Steelmak., 2017, vol. 44, pp. 128–33. https://doi.org/10.1080/03019233.2016.1165498.

    Article  CAS  Google Scholar 

  8. T. Zhang, Y. Min, C. Liu, et al.: ISIJ Int., 2015, vol. 55(8), pp. 1541–48. https://doi.org/10.2355/isijinternational.ISIJINT-2014-691.

    Article  CAS  Google Scholar 

  9. Z. Wu, W. Zheng, G. Li, et al.: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1226–41. https://doi.org/10.1007/s11663-015-0311-4.

    Article  CAS  Google Scholar 

  10. Z. Xiong, S. Liu, X. Wang, et al.: Mater. Charact., 2015, vol. 106, pp. 232–39. https://doi.org/10.1016/j.matchar.2015.06.001.

    Article  CAS  Google Scholar 

  11. S. Luo, B. Wang, Z. Wang, et al.: ISIJ Int., 2017, vol. 57(11), pp. 2000–09. https://doi.org/10.2355/isijinternational.ISIJINT-2017-294.

    Article  CAS  Google Scholar 

  12. S. Gao, M. Wang, J. Guo, et al.: Met. Mater. Int., 2021, vol. 27(5), pp. 1306–14. https://doi.org/10.1007/s12540-019-00521-x.

    Article  CAS  Google Scholar 

  13. Q. Huang, X. Wang, M. Jiang, et al.: Steel Res. Int., 2016, vol. 87(4), pp. 445–55. https://doi.org/10.1002/srin.201500088.

    Article  CAS  Google Scholar 

  14. Y. Ren, L. Zhang, and P.C. Pistorius: Metall. Mater. Trans. B, 2017, vol. 48B(5), pp. 2281–92. https://doi.org/10.1007/s11663-017-1007-8.

    Article  CAS  Google Scholar 

  15. L.V. André: J. Market. Res., 2018, vol. 7, pp. 283–99. https://doi.org/10.1016/j.jmrt.2018.04.003.

    Article  CAS  Google Scholar 

  16. A. Wang, S. Shang, M. He, et al.: J. Mater. Sci., 2014, vol. 49(1), pp. 424–32. https://doi.org/10.1007/s10853-013-7721-y.

    Article  CAS  Google Scholar 

  17. A. Khaldi, N. Bouarissa, and L. Tabourot: J. Supercond. Novel Magn., 2018, vol. 31(5), pp. 1643–47. https://doi.org/10.1007/s10948-017-4377-x.

    Article  CAS  Google Scholar 

  18. Q. Meng, P. Guo, T. Li, et al.: ISIJ Int., 2020, vol. 62(6), pp. 1126–35. https://doi.org/10.2355/isijinternational.ISIJINT-2022-014.

    Article  Google Scholar 

  19. Q. Tian, J. Li, X. Wu, et al.: J. Alloy Compd., 2020, vol. 844, 155831https://doi.org/10.1016/j.jallcom.2020.155831.

    Article  CAS  Google Scholar 

  20. Q. Cai, J. Wang, Y. Wang, et al.: J. Phys. Chem. C, 2016, vol. 120(34), pp. 19087–96. https://doi.org/10.1021/acs.jpcc.6b02998.

    Article  CAS  Google Scholar 

  21. X. Lv, Z. Xu, J. Li, et al.: Appl. Surf. Sci., 2016, vol. 376, pp. 97–104. https://doi.org/10.1016/j.apsusc.2016.03.108.

    Article  CAS  Google Scholar 

  22. L.A. Giannuzzi and F.A. Stevie: Micron, 1999, vol. 30(3), pp. 197–204. https://doi.org/10.1016/S0968-4328(99)00005-0.

    Article  Google Scholar 

  23. S.J. Clark, M.D. Segall, C.J. Pickard, et al.: Zeitschrift für Kristallographie – Cryst. Mater., 2005, vol. 220(5–6), pp. 567–70. https://doi.org/10.1524/zkri.220.5.567.65075.

    Article  CAS  Google Scholar 

  24. P.E. Blöchl: Phys. Rev. B, 1994, vol. 50(24), pp. 17953–79. https://doi.org/10.1103/PhysRevB.50.17953.

    Article  Google Scholar 

  25. V. Milman, B. Winkler, J. White, et al.: Int. J. Quantum Chem., 2000, vol. 77, pp. 895–910. https://doi.org/10.1002/(SICI)1097-461X(2000)77:5%3c895::AID-QUA10%3e3.0.CO;2-C.

    Article  CAS  Google Scholar 

  26. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77(18), pp. 3865–68. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  PubMed  Google Scholar 

  27. W. Kohn and L.J. Sham: Phys. Rev., 1965, vol. 140(4A), pp. A1133-1138. https://doi.org/10.1103/PhysRev.140.A1133.

    Article  Google Scholar 

  28. K. Laasonen, A. Pasquarello, R. Car, et al.: Phys. Rev. B, 1993, vol. 47(16), pp. 10142–53. https://doi.org/10.1103/PhysRevB.47.10142.

    Article  CAS  Google Scholar 

  29. H.J. Monkhorst and J.D. Pack: Phys. Rev. B, 1976, vol. 13(12), p. 5188. https://doi.org/10.1103/PhysRevB.16.1746.

    Article  Google Scholar 

  30. B.L. Bramfitt: Metall. Trans., 1970, vol. 1(7), pp. 1987–95. https://doi.org/10.1007/bf02642799.

    Article  CAS  Google Scholar 

  31. L. Cao, G. Wang, X. Yuan, et al.: Metals, 2019, vol. 9, p. 900. https://doi.org/10.3390/met9080900.

    Article  CAS  Google Scholar 

  32. P. Zhang, D. Zhang, L. Huang, et al.: J. Alloy Compd., 2012, vol. 540, pp. 121–26. https://doi.org/10.1016/j.jallcom.2012.06.049.

    Article  CAS  Google Scholar 

  33. C. Fang, S. Parker, and G. With: J. Am. Ceram. Soc., 2000, vol. 83(8), pp. 2082–84. https://doi.org/10.1111/j.1151-2916.2000.tb01516.x.

    Article  CAS  Google Scholar 

  34. X. Li, Q. Hui, Y. Shao, et al.: Comput. Mater. Sci., 2016, vol. 112, pp. 8–17. https://doi.org/10.1016/j.commatsci.2015.09.035.

    Article  CAS  Google Scholar 

  35. J. Goniakowski, F. Finocchi, and C. Noguera: Rep. Prog. Phys., 2007, vol. 71(1), p. 16501. https://doi.org/10.1088/0034-4885/71/1/016501.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51874061 and No. 52074056), Natural Science Foundation of Chongqing (No. cstc2020jcyj-msxmX0449), Excellent Youth Foundation of Hebei Province, China (No. E2021209039), Hebei Financial Support Project for the Introduced Overseas Student (No. C20210309), and Financial supports from Tangshan Science and Technology Bureau for Fundamental Innovation Team of High Quality Clean Steel in Tangshan (No. 21130209D).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Tan or Tao Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Q., Guo, X., Shao, M. et al. Atomic-Scale Investigation on the Formation of MgAl2O4–MnS Inclusions in 304 Stainless Steel Based on Multi-scale Characterization and First-Principle Calculation. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03061-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03061-x

Navigation