Skip to main content
Log in

Reduction of Metallurgical Slags Using Sunflower Pellets

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The presented paper presents the results of laboratory tests aimed at verifying the suitability for use as a biomass reducing agent in the form of sunflower pellets for the reduction of nonferrous metal oxides. A number of research techniques were used to verify the behavior of the tested material in the reduction process. The techniques used are mainly based on the use of high temperature, which is characteristic of metallurgical processes. The obtained results indicate that this material has similar values to other raw materials of this type in terms of heat of combustion at the level of 16 to 19 MJ kg−1 and the content of volatile components at the level of 75 pct by mass. Research on the reduction of copper slags using sunflower pellets was carried out in various variants of duration and the amount of reducing agent added. The temperature of 1300 °C adopted in the tests reflects the actual process conditions. The obtained results indicate that with the increase in the amount of reducing agent added from 5.67 up to 12.0 wt pct, the degree of transition of copper and lead to the metallic phase increases from approximately 24 to 56 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Source Reprinted from Ref. [32] under CC 4.0 License

Fig. 7

Source Reprinted from Ref. [32] under CC 4.0 License

Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Półka and S. Ptak: Procedia Eng., 2017, vol. 192, pp. 743–47.

    Article  Google Scholar 

  2. Md. Obaidullah, S. Bram, V.K. Verma, and J. De Ruyck: Int. J. Renew. Energy Res., 2012, vol. 2, pp. 147–59.

    Google Scholar 

  3. M.M. Roy and K.W. Corscadden: Appl. Energy, 2012, vol. 99, pp. 206–212.

    Article  CAS  Google Scholar 

  4. H. Radomiak, A. Bala-Litwiniak, M. Zajemska, and D. Musiał: E3S Web Conf., https://doi.org/10.1051/e3sconf/20171402043.

  5. J.R. Vyvyan: Tetrahedron, 2002, vol. 58, pp. 1631–46.

    Article  CAS  Google Scholar 

  6. N. Quaranta, M. Unsen, H. López, C. Giansiracusa, J.A. Roether, and A.R. Boccaccini: Ceram. Int., 2011, vol. 37, pp. 377–85.

    Article  CAS  Google Scholar 

  7. M. Barczewski, K. Sałasińska, and J. Szulc: Polym. Test., 2019, vol. 75, pp. 1–11.

    Article  CAS  Google Scholar 

  8. M. Kułażyński, S. Jabłoński, J. Kaczmarczyk, Ł Świątek, K. Pstrowska, and M. Łukaszewicz: J. Energy Inst., 2018, vol. 91, pp. 668–75.

    Article  Google Scholar 

  9. A. Bala-Litwiniak and M. Zajemska: Renew. Energ., 2020, vol. 162, pp. 151–59.

    Article  CAS  Google Scholar 

  10. R.J. García López, C. Hernández Fernández, J.M. Fierro, J. Cara, O.S. Martinez, and M. Sánchez: Energy, 2014, vol. 74, pp. 845–54.

    Article  Google Scholar 

  11. H. Zhang, G. Zhu, H. Yan, T. Li, and Y. Zhao: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 889–96.

    Article  Google Scholar 

  12. U. Kumar, S. Maroufi, R. Rajarao, M. Mayyas, I. Mansuri, R.K. Joshi, and V. Sahajwalla: J. Clean. Prod., 2017, vol. 158, pp. 218–24.

    Article  CAS  Google Scholar 

  13. Z. Zuo, Q. Yu, M. Wei, H. Xie, W. Duan, K. Wang, and Q. Qin: J. Therm. Anal. Calorim., 2016, vol. 126, pp. 481–91.

    Article  CAS  Google Scholar 

  14. S. Zhou, Y. Wei, S. Zhang, B. Li, H. Wang, Y. Yang, and M. Barati: J. Clean. Prod., 2019, vol. 236, 117668.

    Article  CAS  Google Scholar 

  15. Z. Zuo, Q. Yu, H. Xie, Q. Qin, and M. Wei: Energy Technol., 2018, https://doi.org/10.1007/978-3-319-72362-4_6.

    Article  Google Scholar 

  16. Z. Zuo, Q. Yu, S. Luo, J.-K. Zhang, and E. Zhou: Energy Fuels, 2020, vol. 34, pp. 491–500.

    Article  CAS  Google Scholar 

  17. G. Qu, Y. Wei, B. Li, H. Wang, Y. Yang, and A. McLean: in 11th International Symposium on High-Temperature Metallurgical Processing, Z. Peng, J.-Y. Hwang, J.P. Downey, D. Gregurek, B. Zhao, O. Yücel, E. Keskinkilic, T. Jiang, J.F. White, and M.M. Mahmoud, eds., Springer, Cham, 2020, pp. 417–29.

  18. B. Li, Y. Wei, H. Wang, and Y. Yang: ISIJ Int., 2018, vol. 58, pp. 1168–74.

    Article  CAS  Google Scholar 

  19. J. Łabaj, L. Blacha, M. Jodkowski, A. Smalcerz, M. Fröhlichová, and R. Findorák: J. Clean. Prod., 2021, vol. 288, p. 125640.

    Article  Google Scholar 

  20. L. Blacha, J. Łabaj, M. Jodkowski, and A. Smalcerz: Metalurgija, 2020, vol. 59, pp. 329–32.

    CAS  Google Scholar 

  21. T.C. Ooi, E. Aries, B.C.R. Ewan, D. Thompson, D.R. Anderson, R. Fisher, T. Fray, and D. Tognarelli: Miner. Eng., 2008, vol. 21, pp. 167–77.

    Article  CAS  Google Scholar 

  22. N. Kantová, A. Čaja, P. Belany, Z. Kolková, P. Hrabovský, D. Hečko, and P. Mičko: Bioresources, 2022, vol. 17, pp. 1881–91.

    Article  Google Scholar 

  23. M.N. Mami, M. Lajili, B. Khiari, and M. Jeguirim: Fuel, 2020, vol. 277, pp. 118181–91.

    Article  Google Scholar 

  24. A. Forero, J. Jochum, and S. Vargas: Environmental Biotechnology, 2012, vol. 8(2), pp. 67–76.

    Google Scholar 

  25. N. Hussain, N. Feroze, M.A. Kazmi, and M. Iqbal: Sci. Int., 2016, vol. 25, pp. 4547–56.

    Google Scholar 

  26. Chemistry Software Suite: http://www.hsc-chemistry.net/, accessed 15 Jan 2023.

  27. A. Bala-Litwiniak: Gospodarka Materiałowa i Logistyka, 2019, vol. 2019, pp. 49–54.

    Article  Google Scholar 

  28. F. Duan, J. Zhang, C.-S. Chyang, Y. Wang, and J. Tso: Fuel Process. Technol., 2014, vol. 128, pp. 28–35.

    Article  CAS  Google Scholar 

  29. J.M. Ebeling and B.M. Jenkins: Trans. ASABE, 1985, vol. 28, pp. 898–902.

    Article  Google Scholar 

  30. A. Demirbaş: Fuel, 1997, vol. 76, pp. 431–34.

    Article  Google Scholar 

  31. C. Sheng and J.L.T. Azevedo: Biomass Bioenergy, 2005, vol. 28, pp. 499–507.

    Article  CAS  Google Scholar 

  32. S. Ptak and M. Półka: Wpływ Biomasy Na Parametry Palności I Wybuchowości Pyłu Węgla Kamiennego, Szkoła Główna Służby Pożarniczej, Warsaw, Poland, 2018.

Download references

Acknowledgments

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

Szymon Ptak: Conceptualization, investigation, and writing—original draft; Tomasz Matuła: formal analysis and investigation; Leszek Blacha: writing—review and editing, writing—original draft, and supervision; Jerzy Łabaj: methodology and resources; Albert Smalcerz: conceptualization, formal analysis, and supervision; Marzena Półka: methodology, investigation, and supervision

Corresponding author

Correspondence to Szymon Ptak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ptak, S., Matuła, T., Blacha, L. et al. Reduction of Metallurgical Slags Using Sunflower Pellets. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03059-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03059-5

Navigation