Skip to main content
Log in

Effect of Shape Parameters on the Melting Behavior of Hollow Granular Mold Flux for Continuous Casting

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Hollow granular mold flux is an essential functional material in the continuous casting process, and its melting behavior significantly influences continuous casting. Existing researches mainly focus on the influence of carbonaceous materials and carbonates on the melting behavior of mold flux. This study investigates the influence of granule shape parameters on the melting behavior of mold flux using a melting rate tester based on a copper bath. The results show that the gas diffusivity in the powder layer decreases with the decrease in the granule size, which improves the thermal insulation of the powder layer, and promotes the melting of the mold flux. In the mold flux with composite granule size, fine granules will fill in the pores formed by the accumulation of coarse granules, reduce the gas diffusivity, and promote the melting of the mold flux. When the granules have poor sphericity and large porosity, uneven sintering is prone to occur during the heating process, resulting in uneven pores in the sintered layer and affecting the melting uniformity of the mold flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

(Adapted from Ref. [7])

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J.A. Kromhout: Trans. Indian Inst. Met., 2013, vol. 66, pp. 587–96.

    Article  CAS  Google Scholar 

  2. K.C. Mills and A.B. Fox: ISIJ Int., 2003, vol. 43, pp. 1479–86.

    Article  CAS  Google Scholar 

  3. D. Singh, P. Bhardwaj, Y.D. Yang, A. McLean, M. Hasegawa, and M. Iwase: Steel Res. Int., 2010, vol. 81, pp. 974–79.

    Article  CAS  Google Scholar 

  4. M. Suzuki, M. Suzuki, and M. Nakada: ISIJ Int., 2001, vol. 41, pp. 670–82.

    Article  CAS  Google Scholar 

  5. L. Zhou, W. Wang, J. Wei, and K. Zhou: ISIJ Int., 2015, vol. 55, pp. 821–29.

    Article  CAS  Google Scholar 

  6. M. Wolf: 81st Steelmaking conference proceedings, Toronto, 1998, pp. 53-62.

  7. M. Supradist, A.W. Cramb, and K. Schwerdtfeger: ISIJ Int., 2004, vol. 44, pp. 817–26.

    Article  CAS  Google Scholar 

  8. N. Pradhan, M. Ghosh, D.S. Basu, and S. Mazumdar: ISIJ Int., 1999, vol. 39, pp. 804–08.

    Article  CAS  Google Scholar 

  9. M. Kawamoto, K. Nakajima, T. Kanazawa, and K. Nakai: ISIJ Int., 1994, vol. 34, pp. 593–98.

    Article  Google Scholar 

  10. E. Wei, Y. Yang, C. Feng, I.D. Sommerville, and A. McLean: J. Iron Steel Res. Int., 2006, vol. 13, pp. 22–26.

    Article  CAS  Google Scholar 

  11. F. Chen, G. Wen, P. Tang, L. Yu, and F. Han: J. Therm. Anal. Calorim., 2022, vol. 147, pp. 10965–75.

    Article  CAS  Google Scholar 

  12. J.A. Kromhout and D.W. van der Plas: Ironmak. Steelmak., 2013, vol. 29, pp. 303–07.

    Article  Google Scholar 

  13. A. Cruz, F. Chávez, A. Romero, and E. Palacios: Miner. Process. Extr Metall., 2007, vol. 116, pp. 65–71.

    Article  CAS  Google Scholar 

  14. K.C. Mills and C.-Å. Däcker: The Casting Powders Book, Springer, Cham, 2017, pp. 118–19.

    Book  Google Scholar 

  15. H. Kania, K. Nowacki, and T. Lis: Metalurgija, 2013, vol. 52, pp. 204–06.

    Google Scholar 

  16. S. Diehl, J. A. Moore and R. J. Phillips: 78th Steelmaking Conference Proceedings, Nashville, 1995, pp. 351-4.

  17. X. Li, X. Yin, and L. Zhang: Mat. Sci. Eng. A, 2009, vol. 500, pp. 63–69.

    Article  Google Scholar 

  18. Y.C. Dong and X.Q. Liu: J. Membr. Sci., 2006, vol. 285, pp. 173–81.

    Article  CAS  Google Scholar 

  19. J. Fang, G. Qin, W. Wei, and X. Zhao: Sep. Purif. Technol., 2011, vol. 80, pp. 585–91.

    Article  CAS  Google Scholar 

  20. C. Wang, J. Liu, H. Du, and A. Guo: Ceram. Int., 2012, vol. 38, pp. 4395–4400.

    Article  CAS  Google Scholar 

  21. F. Chen, G. Wen, P. Tang and Q. Fu:Characterization of Minerals, Metals, and Materials 2023, San Diego, 2023, pp. 147–56.

  22. F. Han, G. Wen, P. Tang, and F. Chen: Metall. Mater. Trans. B, 2023, https://doi.org/10.1007/s11663-023-02861-x.

    Article  Google Scholar 

  23. F. Chen, G. Wen, P. Tang, Z. Hou, Y. Lu, P. Cheng, and Q. Kong: Steel Res. Int., 2023, https://doi.org/10.1002/srin.202300154.

    Article  Google Scholar 

  24. M. Norouzi, S.G. Hosseini, M. Salimi, and M. Tahernejad: Part. Sci. Technol., 2021, vol. 40, pp. 296–306.

    Google Scholar 

  25. T.F. Guimaraes, A.D. Lanchate, J.S. da Costa, A.L. Vicosa, and L.A.P. de Freitas: Adv. Powder Technol., 2015, vol. 26, pp. 1094–1101.

    Article  CAS  Google Scholar 

  26. T. Wei, A. Hishikawa, Y. Shimizu, T. Akazawa, M. Murata, and I. Kimura: Powder Technol., 2014, vol. 261, pp. 147–53.

    Article  CAS  Google Scholar 

  27. S. Gu, L. Yu, G. Wen, P. Tang, Z. Wang, and W. Jiang: Steel Res. Int., 2020, vol. 92, p. 2000416.

    Article  Google Scholar 

  28. Q. Guo, Z. Cheng, G. Cheng, B. Yan, J. Li, L. Hou, and F. Ronsse: Sci. Total Environ., 2020, vol. 726, p. 138634.

    Article  CAS  Google Scholar 

  29. J.W. Kim, Y.D. Lee, and H.G. Lee: ISIJ Int., 2001, vol. 41, pp. 116–23.

    Article  CAS  Google Scholar 

  30. J.W. Kim, Y.D. Lee, and H.G. Lee: ISIJ Int., 2004, vol. 44, pp. 334–41.

    Article  CAS  Google Scholar 

  31. J.W. Kim and H.G. Lee: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 17–24.

    Article  CAS  Google Scholar 

  32. J.A. Kromhout, A.A. Kamperman, M. Kick, and J. Trouw: Ironmak. Steelmak., 2013, vol. 32, pp. 127–32.

    Article  Google Scholar 

  33. N. Claussen, S. Wu, and D. Holz: J. Eur. Ceram. Soc., 1994, vol. 1, pp. 97–109.

    Article  Google Scholar 

  34. J.H. She and T. Ohji: Mater. Chem. Phys., 2003, vol. 80, pp. 610–14.

    Article  CAS  Google Scholar 

  35. F. Han, G. Wen, F. Zhang, Z. Wang, and L. Yu: Steel Res. Int., 2022, vol. 94, p. 2200480.

    Article  Google Scholar 

  36. I. Marschall, N. Kölbl, H. Harmuth, and C. Atzenhofer: J. Iron Steel Res. Int., 2019, vol. 26, pp. 403–11.

    Article  CAS  Google Scholar 

  37. K. C. Mills: 75th Steelmaking Conference Proceedings, Toronto, 1992, pp. 85-92.

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 52274319).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghua Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Wen, G., Tang, P. et al. Effect of Shape Parameters on the Melting Behavior of Hollow Granular Mold Flux for Continuous Casting. Metall Mater Trans B 54, 3485–3496 (2023). https://doi.org/10.1007/s11663-023-02926-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02926-x

Navigation