Skip to main content
Log in

Hydrogen-Aided Microstructural Engineering of Additively Manufactured Ti–6Al–4V

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Electron beam melting (EBM) additive manufacturing of Ti–6Al–4V subjects the material to complex thermal cycles, resulting in a columnar morphology of the prior \(\beta \) grains (PBGs). While the columnar PBGs of EBM-processed Ti–6Al–4V can be transformed to an equiaxed morphology through a super-transus (i.e., above the \(\beta \)-transus temperature) heat treatment, this also leads to the formation of a coarse lamellar two-phase microstructure. Such a microstructure is prone to strain localization and premature fracture. Herein, we present a thermohydrogen post-process treatment that achieves equiaxed PBG morphology in EBM-processed Ti–6Al–4V without sacrificing mechanical properties. Our results show that a three-step thermohydrogen post-process treatment can transform the columnar PBG morphology to an equiaxed morphology with fine microstructure, and strength and ductility levels comparable to those of the most optimum as-fabricated samples. This three-step thermohydrogen post-process treatment involves hydrogenation and phase transformation treatment in a hydrogen atmosphere, and subsequent dehydrogenation treatment in vacuum. Notably, all these treatments are carried out at temperatures well below the \(\beta \)-transus temperature of hydrogen-free Ti–6Al–4V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, and R.B. Wicker: J. Mater. Sci. Technol., 2012, vol. 28, pp. 1–4.

    Article  CAS  Google Scholar 

  2. W.E. Frazier: J. Mater. Eng. Perform., 2014, vol. 23, pp. 1917–28.

    Article  CAS  Google Scholar 

  3. S. Liu and Y.C. Shin: Mater. Des., 2019, vol. 164, p. 107552.

    Article  CAS  Google Scholar 

  4. L. Facchini, E. Magalini, P. Robotti, and A. Molinari: Rapid Prototyp. J., 2009, vol. 15, pp. 171–78.

    Article  Google Scholar 

  5. S.S. Al-Bermani, M.L. Blackmore, W. Zhang, and I. Todd: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3422–34.

    Article  Google Scholar 

  6. A.A. Antonysamy, J. Meyer, and P.B. Prangnell: Mater Charact, 2013, vol. 84, pp. 153–68.

    Article  CAS  Google Scholar 

  7. C. De Formanoir, S. Michotte, O. Rigo, L. Germain, and S. Godet: Mater. Sci. Eng. A, 2016, vol. 652, pp. 105–19.

    Article  Google Scholar 

  8. Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, and S.B. Tor: Mater. Des., 2018, vol. 139, pp. 565–86.

    Article  CAS  Google Scholar 

  9. H.K. Rafi, N.V. Karthik, H. Gong, T.L. Starr, and B.E. Stucker: J. Mater. Eng. Perform., 2013, vol. 22, pp. 3872–83.

    Article  CAS  Google Scholar 

  10. Z. Liu, B. He, T. Lyu, and Y. Zou: JOM, 2021, vol. 73, pp. 1804–18.

    Article  Google Scholar 

  11. G. Lütjering and J.C. Williams: Titanium, 2nd ed. Springer, Berlin, 2007.

    Google Scholar 

  12. P. Nandwana, Y. Lee, C. Ranger, A.D. Rollett, R.R. Dehoff, and S.S. Babu: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 3429–39.

    Article  Google Scholar 

  13. M. Fang, F. Hu, Y. Han, J. Le, J. Xi, J. Song, L. Ke, M. Xiao, and W. Lu: Mater. Sci. Eng. A, 2021, vol. 827, 142031.

    Article  CAS  Google Scholar 

  14. M. Seifi, A. Salem, D. Satko, J. Shaffer, and J.J. Lewandowski: Int. J. Fatigue, 2017, vol. 94, pp. 263–87.

    Article  CAS  Google Scholar 

  15. H. Gong, K. Rafi, H. Gu, G.D. Janaki Ram, T. Starr, and B. Stucker: Mater. Des., 2015, vol. 86, pp. 545–54.

    Article  CAS  Google Scholar 

  16. T. Montalbano, B.N. Briggs, J.L. Waterman, S. Nimer, C. Peitsch, J. Sopcisak, D. Trigg, and S. Storck: J. Mater. Process. Technol., 2021, vol. 294, 117113.

    Article  CAS  Google Scholar 

  17. S.P. Narra, A.D. Rollett, A. Ngo, D. Scannapieco, M. Shahabi, T. Reddy, J. Pauza, H. Taylor, C. Gobert, and E. Diewald: J. Mater. Process. Technol., 2022, vol. 311, p. 117775.

    Article  Google Scholar 

  18. R. Cunningham, A. Nicolas, J. Madsen, E. Fodran, E. Anagnostou, M.D. Sangid, and A.D. Rollett: Mater. Res. Lett., 2017, vol. 5, pp. 516–25.

    Article  CAS  Google Scholar 

  19. H. Galarraga, R.J. Warren, D.A. Lados, R.R. Dehoff, M.M. Kirka, and P. Nandwana: Mater. Sci. Eng. A, 2017, vol. 685, pp. 417–28.

    Article  CAS  Google Scholar 

  20. L. Draelos, P. Nandwana, and A. Srivastava: Mater. Sci. Eng. A, 2020, vol. 795, p. 139986.

    Article  CAS  Google Scholar 

  21. Y. Zhou, K. Wang, Z. Sun, and R. Xin: J. Mater. Process. Technol., 2022, vol. 306, 117607.

    Article  CAS  Google Scholar 

  22. J. Liu, G. Li, Q. Sun, H. Li, J. Sun, and X. Wang: J. Mater. Process. Technol., 2022, vol. 299, 117366.

    Article  CAS  Google Scholar 

  23. M. Jamshidinia, M.M. Atabaki, M. Zahiri, S. Kelly, A. Sadek, and R. Kovacevic: J. Mater. Process. Technol., 2015, vol. 226, pp. 264–71.

    Article  CAS  Google Scholar 

  24. M.J. Bermingham, D. Kent, H. Zhan, D.H. Stjohn, and M.S. Dargusch: Acta Mater., 2015, vol. 91, pp. 289–303.

    Article  CAS  Google Scholar 

  25. O.N. Senkov and F.H. Froes: Int. J. Hydrogen Energy, 1999, vol. 24, pp. 565–76.

    Article  CAS  Google Scholar 

  26. D.H. Kohn and P. Ducheyne: J. Mater. Sci., 1991, vol. 26, pp. 328–34.

    Article  CAS  Google Scholar 

  27. M. Niinomi, B. Gong, T. Kobayashi, Y. Ohyabu, and O. Toriyama: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1141–51.

    Article  CAS  Google Scholar 

  28. F.H. Froes, O.N. Senkov, and J.I. Qazi: Int. Mater. Rev., 2004, vol. 49, pp. 227–45.

    Article  CAS  Google Scholar 

  29. Z. Sun, W. Zhou, and H. Hou: Int. J. Hydrogen Energy, 2009, vol. 34, pp. 1971–76.

    Article  CAS  Google Scholar 

  30. J.D. Paramore, Z.Z. Fang, P. Sun, M. Koopman, K.S.R. Chandran, and M. Dunstan: Scripta Mater., 2015, vol. 107, pp. 103–06.

    Article  CAS  Google Scholar 

  31. J.D. Paramore, Z.Z. Fang, M. Dunstan, P. Sun, and B.G. Butler: Sci. Rep., 2017, vol. 7, p. 41444.

    Article  CAS  Google Scholar 

  32. M. Knezevic, S. Ghorbanpour, N.C. Ferreri, I.A. Riyad, A.D. Kudzal, J.D. Paramore, S.C. Vogel, and B.A. Mcwilliams: Mater. Sci. Eng. A, 2021, vol. 809, 140980.

    Article  CAS  Google Scholar 

  33. H. Galarraga, D.A. Lados, R.R. Dehoff, M.M. Kirka, and P. Nandwana: Addit. Manuf., 2016, vol. 10, pp. 47–57.

    CAS  Google Scholar 

  34. ASTM E1447-09: Standard Test Method for Determination of Hydrogen in Titanium and Titanium Alloys by Inert Gas Fusion Thermal Conductivity/Infrared Detection Method, ASTM International, Materials Park, 2016.

  35. ASTM E8/E8M-21: Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, Materials Park, 2021.

  36. ASTM B348-10: Standard Specification for Titanium and Titanium Alloy Bars and Billets, ASTM International, Materials Park, 2010.

  37. ASTM E112-13: Standard Test Methods for Determining Average Grain Size, ASTM International, Materials Park, 2021.

  38. G.C. Obasi, S. Birosca, J.Q. Da Fonseca, and M. Preuss: Acta Mater., 2012, vol. 60, pp. 1048–58.

    Article  CAS  Google Scholar 

  39. P. Sun, Z.Z. Fang, M. Koopman, J. Paramore, K.R. Chandran, Y. Ren, and J. Lu: Acta Mater., 2015, vol. 84, pp. 29–41.

    Article  CAS  Google Scholar 

  40. P. Sun, Z.Z. Fang, M. Koopman, Y. Xia, J. Paramore, K. Ravi Chandran, Y. Ren, and J. Lu: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 5546–60.

    Article  Google Scholar 

Download references

Acknowledgments

LDH is thankful to Michael Taylor Hurst and Daniel Oliver Lewis of Texas A&M University for their technical assistance with the hydrogenation experiments. AS gratefully acknowledges the financial support provide by the Haythornthwaite Foundation through the ASME/AMD – Haythornthwaite Research Initiation Grant, the US Army Research Laboratory through the cooperative agreement - Materials and Manufacturing Processes for the Army of the Future, and the U.S. National Science Foundation Grant CMMI-1944496.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit Srivastava.

Ethics declarations

Conflict of interest

James D. Paramore, and Brady G. Butler have patent #Thermo-hydrogen refinement of microstructure of titanium materials (US10920307B2) issued to University of Utah Research Foundation; US Department of Army.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Draelos-Hagerty, L., Paramore, J.D., Butler, B.G. et al. Hydrogen-Aided Microstructural Engineering of Additively Manufactured Ti–6Al–4V. Metall Mater Trans B 54, 3451–3461 (2023). https://doi.org/10.1007/s11663-023-02924-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02924-z

Navigation