Skip to main content
Log in

Formation Mechanism of Different Morphologies Inclusions in Tellurium-Containing Medium-Carbon-Microalloyed Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Tellurium (Te) modification is an important method to improve the morphology of sulfide (MnS) in steel, the morphology of MnS varies with the difference in Te content of Te-containing inclusions. To explore the relationship between the concentration of Te in Te-containing inclusions and the morphology, 32 and 68 ppm Te were added into medium-carbon microalloyed steel (MCMAS) under laboratory conditions. It shows that the average density and area content of inclusion increase with the increasing Te content in steel, the distribution of inclusions is the most uniform in S2, unlike the aggregation of inclusions in S3. The main types of inclusions include single-particle MnS and telluride (MnTe), as well as their composite inclusions. Different types of composite inclusions can be divided into semi-surround composite (SSC), surround composite (SC), equivalent composite (EC), and ovulatory composite (OC). Combining the observation results, the nucleation kinetics of MnS and MnTe, and the crystallographic analysis of various MnS and MnTe phases, the formation mechanisms of different Te-containing inclusions were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Adapted from Ref. [16], © The Minerals, Metals & Materials Society and ASM International 2022 (Color figure online)

Fig. 8

Similar content being viewed by others

References

  1. C. Capdevila, F.G. Caballero, C. García-Mateo, and C.G. De-Andrés: Mater. Trans., 2004, vol. 45, pp. 2678–85.

    Article  CAS  Google Scholar 

  2. F. Zhao, H. Hu, X.H. Liu, Z.H. Zhang, and J.X. Xie: J. Alloys Compd., 2021, vol. 869, p. 159326.

    Article  CAS  Google Scholar 

  3. L. Ceschini, A. Marconi, C. Martini, A. Morri, and A. Di Schino: Mater. Des., 2013, vol. 45, pp. 171–78.

    Article  CAS  Google Scholar 

  4. C.E. Sims: AIME, 1959, vol. 215, pp. 367–93.

    CAS  Google Scholar 

  5. C. Hippsley: Acta Metall., 1987, vol. 35, pp. 2399–416.

    Article  CAS  Google Scholar 

  6. B. Wen and B. Song: Steel Res. Int., 2012, vol. 83, pp. 61–72.

    Google Scholar 

  7. Y. Kim, H. Kim, M. Kang, K. Rhee, S.Y. Shin, and S. Lee: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4615–25.

    Google Scholar 

  8. K. Kishi, H. Eda, and Y. Kitsunai: J. Jpn. Soc. Precis. Eng., 1972, vol. 38, pp. 174–81.

    Article  Google Scholar 

  9. Q.K. Yang, P. Shen, D. Zhang, Y.X. Wu, and J.X. Fu: Int. J. Miner. Metall. Mater., 2018, vol. 25, pp. 420–28.

    Article  CAS  Google Scholar 

  10. P. Shen, Q.K. Yang, D. Zhang, S.F. Yang, and J.X. Fu: Metals Basel, 2018, vol. 8, p. 639.

    Article  Google Scholar 

  11. N.F. Liu, Q.R. Tian, Z.F. Wang, X.Y. Xu, J.X. Fu: Ironmak. Steelmak., 2023, vol. 50, pp. 1302–10.

    Article  CAS  Google Scholar 

  12. N.F. Liu, X.Y. Xu, Z.F. Wang, W.B. Wu, P. Shen, J.X. Fu, and J. Li: J. Mater. Res. Technol., 2023, vol. 24, pp. 2226–38.

    Article  CAS  Google Scholar 

  13. K. Tetsuo, A. Shozo, K. Atsuyoshi, and N. Sadayuki: J. Jpn. Foundry Eng. Soc., 1982, vol. 53, pp. 195–202.

    Google Scholar 

  14. S. Zhang, F. Wang, S. Yang, J. Liu, and J. Li: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2284–95.

    Article  Google Scholar 

  15. F. Wang, H. Guo, W. Liu, S.F. Yang, S. Zhang, and J.S. Li: Materials, 2019, vol. 12, p. 1034.

    Article  CAS  Google Scholar 

  16. Q. Huang, Y. Ren, Y. Luo, S. Ji, and L.F. Zhang: Metall. Mater. Trans. B, 2023, vol. 54B, pp. 270–81.

    Google Scholar 

  17. L.C. Zheng, A. Malfliet, P. Wollants, B. Blanpain, and M.X. Guo: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2447–58.

    Article  Google Scholar 

  18. P. Shen, H. Zhang, X.Y. Xu, Q.K. Yang, and J.X. Fu: Steel Res. Int., 2021, vol. 92, p. 2100235.

    Article  CAS  Google Scholar 

  19. P. Shen, Q.K. Yang, D. Zhang, Y.X. Wu, and J.X. Fu: Steel Res. Int., 2018, vol. 25, pp. 787–95.

    Article  Google Scholar 

  20. J.B. Xie, T. Fan, H. Sun, Z.Q. Zeng, and J.X. Fu: Met. Mater. Int., 2021, vol. 27, pp. 1416–27.

    Article  CAS  Google Scholar 

  21. X.Y. Wu, L.P. Wu, J.B. Xie, P. Shen, and J.X. Fu: Metall. Res. Technol., 2020, vol. 117, pp. 107.

    Article  CAS  Google Scholar 

  22. F.B. Pickering: AISI, 1989, pp. 381-401.

  23. Manganese Telluride, 2023, https://www.chembk.com/cn/chem/%E7%A2%B2%E5%8C%96%E9%94%B0

  24. T.Y. T’ien, L.H. Van Vlack, and R.J. Martin: The System MnTe–MnS: Progress Report, The University of Michigan, New York, 1967, pp. 1–8.

    Google Scholar 

  25. H. Suito and H. Ohta: ISIJ Int., 2006, vol. 46, pp. 33–41.

    Article  CAS  Google Scholar 

  26. K. Oikawa, K. Ishida, and T. Nishizawa: ISIJ Int., 1997, vol. 37, pp. 332–38.

    Article  CAS  Google Scholar 

  27. W.Q. Yang, X.H. Zhu, Z.R. Wei, D.Y. Yang, and L.Z. Li: Mol. Phys., 2011, vol. 109, pp. 251–56.

    Article  CAS  Google Scholar 

  28. O. Goede, W. Heimbrod, V. Weinhold, E. Schnürer, and H.G. Eberle: Phys. Status Solidi B, 1987, vol. 143, pp. 511–18.

    Article  CAS  Google Scholar 

  29. O. Kavcı and S. Cabuk: Comp. Mater. Sci., 2014, vol. 95, pp. 99–105.

    Article  Google Scholar 

  30. R.W.G. Wyckoff: Crystal Structures, 2nd ed. Interscience, New York, 1963, p. 17.

    Google Scholar 

  31. B.S. Wang and Y. Liu: Acta Phys. Sin., 2016, vol. 65, pp. 246–51.

    Google Scholar 

  32. C.H. Griffiths: J. Mater. Sci., 1978, vol. 13, pp. 513–18.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully express their appreciation to Natural Science Foundation of China (Grant No. 52074179) for supporting this work. One of the authors, Xiangyu Xu, gratefully acknowledges support from the National Natural Science Foundation of China (Youth Program No. 52104335) and Shanghai “Super Postdoctoral” Incentive Plan (Grant No. 2020194). Nianfu Liu and Jianxun Fu appreciate the foundation’s support of Major Science and Technology Special Projects in Guangdong Province (Grant No. 220814196271010).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxun Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Q., Wang, Z., Zhang, X. et al. Formation Mechanism of Different Morphologies Inclusions in Tellurium-Containing Medium-Carbon-Microalloyed Steel. Metall Mater Trans B 54, 3405–3415 (2023). https://doi.org/10.1007/s11663-023-02917-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02917-y

Navigation