Skip to main content
Log in

Sulfide Capacity Model for Multicomponent Molten Slag Based on Artificial Neural Network

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Sulfide capacity is one of the essential properties of molten slag, which determines the sulfur content in the hot metal during the smelting process. In the present study, an artificial neural network model was developed to predict the sulfide capacity of molten slag over a wide range of components and temperature. A CaO–SiO2–MgO–Al2O3–FeO–TiO2–MnO slag database for sulfide capacity covering most of the previous confident literature was constructed. The influence of activation function, optimization algorithm, and various hidden layers on the performance of the models on sulfide capacity were studied using ten-fold cross-validation. The developed model shows excellent prediction performance, which is capable of accurately predicting complex slag systems, especially TiO2-bearing slag systems. The accuracy and nonlinear prediction ability of the model are verified by experiments, and the iso-sulfide capacity diagrams of CaO–SiO2–Al2O3, CaO–SiO2–TiO2–8 wt pct MgO–14 wt pct Al2O3, and CaO–SiO2–30 pct wt pct TiO2–MgO–14 wt pct Al2O3 slag systems at 1773 K were established with the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Zhang, X. Lv, Z. Yan, Y. Qin, and C. Bai: Ironmak. Steelmak., 2016, vol. 43, pp. 378–84.

    CAS  Google Scholar 

  2. J.H. Park and G.H. Park: ISIJ Int., 2012, vol. 52, pp. 764–69.

    CAS  Google Scholar 

  3. M.K. Cho, J. Cheng, J.H. Park, and D.J. Min: ISIJ Int., 2010, vol. 50, pp. 215–21.

    CAS  Google Scholar 

  4. A. Shankar, M. Gornerup, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 941–47.

    CAS  Google Scholar 

  5. C.J.B. Fincham and F.D. Richardson: Proc. R. Soc. Lond. Ser. A, 1954, vol. 223, pp. 40–62.

    CAS  Google Scholar 

  6. G.H. Zhang, K.C. Chou, and U. Pal: ISIJ Int., 2013, vol. 53, pp. 761–67.

    CAS  Google Scholar 

  7. B. Derin, M. Suzuki, and T. Tanaka: ISIJ Int., 2010, vol. 50, pp. 1059–63.

    CAS  Google Scholar 

  8. A. Ma, S. Mostaghel, and K. Chattopadhyay: ISIJ Int., 2017, vol. 57, pp. 114–22.

    CAS  Google Scholar 

  9. Z.C. Xin, J.S. Zhang, W.H. Lin, J.G. Zhang, Y. Jin, J. Zheng, J.F. Cui, and Q. Liu: Ironmak. Steelmak., 2020, vol. 1, pp. 1–9.

    Google Scholar 

  10. J.A. Dufy, M.D. Ingram, and I.D. Sommerville: J. Chem. Soc. Farady Trans., 1978, vol. 74, pp. 1410–19.

    Google Scholar 

  11. T. Tsao and H.G. Katayama: ISIJ Int., 2006, vol. 26, pp. 717–23.

    Google Scholar 

  12. N.J. Sosinsky and I.D. Sommerville: MTB, 1986, vol. 17, pp. 331–37.

    Google Scholar 

  13. R.W. Young, J.A. Duffy, G.J. Hassall, and Z. Xu: Ironmak. Steelmak., 1992, vol. 19, pp. 201–19.

    CAS  Google Scholar 

  14. A. Shankar: Ironmak. Steelmak, 2006, vol. 33, pp. 413–18.

    CAS  Google Scholar 

  15. Y. Taniguchi, N. Sano, and S. Seetharaman: ISIJ Int., 2009, vol. 49, pp. 156–63.

    CAS  Google Scholar 

  16. Y. Taniguchi, L. Wang, N. Sano, and S. Seetharaman: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 477–84.

    Google Scholar 

  17. Z.S. Ren, X.J. Hu, and K.C. Chou: J. Iron Steel Res. Int., 2013, vol. 20, pp. 21–25.

    CAS  Google Scholar 

  18. X. Hao and X. Wang: Steel Res. Int., 2016, vol. 87, pp. 359–63.

    CAS  Google Scholar 

  19. D, A., Neural Networks: History and Applications. Nova Science Publishers Inc, Hauppauge, 2020.

  20. Y. Li: New Technol New Prod China, 2011, vol. 18, p. 34.

    Google Scholar 

  21. A.D. Anastasiadis, G.D. Magoulas, and M.N. Vrahatis: Neurocomputing, 2005, vol. 64, pp. 253–70.

    Google Scholar 

  22. K. Karsrud: Scand. J. Metall., 1984, vol. 13, pp. 173–75.

    Google Scholar 

  23. P.T. Carter and T.G. Macfarlane: J. Iron Steel Inst., 1957, vol. 185, pp. 54–61.

    Google Scholar 

  24. K.P. Abraham and F.D. Richardson: J. Iron Steel Inst., 1960, vol. 196, pp. 309–12.

    CAS  Google Scholar 

  25. S.D. Brown, R.J. Roxburgh, I. Ghita, and H.B. Bell: Ironmak. Steelmak., 1982, vol. 9, pp. 163–67.

    Google Scholar 

  26. M. Grnerup and O. Wijk: Scand. J. Metall., 1996, vol. 25, pp. 103–07.

    Google Scholar 

  27. G.H. Park, Y.B. Kang, and J.H. Park: ISIJ Int., 2011, vol. 51, pp. 1375–82.

    Google Scholar 

  28. R.A. Sharma and F.D. Richardson: J. Iron Steel Inst., 1961, vol. 198, pp. 386–89.

    CAS  Google Scholar 

  29. J. Cameron, T.B. Gibbons, and J. Taylor: J. Iron Steel Inst., 1966, vol. 204, pp. 1223–28.

    CAS  Google Scholar 

  30. G.J.W. Kor and F.D. Richardson: J. Iron Steel Inst., 1968, vol. 206, pp. 700–04.

    CAS  Google Scholar 

  31. M. Hino, S. Kitagawa, and S. Ban-Ya: ISIJ Int., 1993, vol. 33, pp. 36–42.

    CAS  Google Scholar 

  32. E. Drakaliysky, R. Nilsson, S.C. Du, and S. Seetharaman: High Temp. Mater. Proc., 1996, vol. 15, pp. 263–72.

    CAS  Google Scholar 

  33. M. Ohta, T. Kubo, and K. Morita: Tetsu-to-Hagané., 2003, vol. 89, pp. 742–49.

    CAS  Google Scholar 

  34. R.A. Sharma and F.D. Richardson: Trans. AIME, 1965, vol. 233, pp. 1586–92.

    CAS  Google Scholar 

  35. M.M. Nzotta, R. Nilsson, S.C. Du, and S. Seetharaman: Ironmak. Steelmak., 1997, vol. 24, pp. 300–05.

    CAS  Google Scholar 

  36. M.M. Nzotta, S.C. Du, and S. Seetharaman: ISIJ Int., 1999, vol. 39, pp. 657–63.

    CAS  Google Scholar 

  37. M.M. Nzotta, S.C. Du, and S. Seetharaman: ISIJ Int., 1998, vol. 38, pp. 1170–79.

    CAS  Google Scholar 

  38. K. Karsrud: Scand. J. Metall., 1984, vol. 13, pp. 265–68.

    Google Scholar 

  39. Thomas G. B: In ProQuest LLC, 1955.

  40. M.R. Kalyanram, T.G. Macfarlane, and H.B. Bell: J. Iron Steel Inst., 1960, vol. 195, pp. 58–63.

    CAS  Google Scholar 

  41. K. Karsrud: Scand. J. Metall., 1984, vol. 13, pp. 144–50.

    Google Scholar 

  42. A. F. T. Condo, Q. Shu, S. C. Du: Steel Res. Int., 2018, vol. 89.

  43. J.S. Choi, Y. Park, S. Lee, and D.J. Min: J. Am. Ceram. Soc., 2018, vol. 101, pp. 2856–67.

    CAS  Google Scholar 

  44. O. Neill, S. C. Hugh, Mavrogenes: J Petrol., 2002, vol. 43, pp. 1049–87.

  45. C. S.-J. A. M. Allibert: 3rd International Conference on Molten Slags and Fluxes, The Institute of Metals, London, 1988, vol., pp. 85–89.

  46. M.M. Nzotta, S.C. Du, and S. Seetharaman: Metall. Mater. Trans. B, 1999, vol. 38B, pp. 909–20.

    Google Scholar 

  47. S. Seetharaman and R. Nilsson: Scand. J. Metall., 1994, vol. 23, pp. 81–86.

    Google Scholar 

  48. M.M. Nzotta: Scand. J. Metall., 1997, vol. 26, pp. 169–77.

    CAS  Google Scholar 

  49. J.S. Choi and D.J. Min: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2758–68.

    Google Scholar 

  50. K.D. Kim, W.W. Huh, and D.J. Min: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 889–96.

    Google Scholar 

  51. K.P. Abraham and F.D. Richardson: Iron Steel Inst., 1960, vol. 196, pp. 313–17.

    CAS  Google Scholar 

  52. E. Drakaliysky, N.S. Srinivasan, and L.I. Staffansson: Scand. J. Metall., 1991, vol. 20, pp. 251–55.

    CAS  Google Scholar 

  53. X. Tang and C. Xu: ISIJ Int., 1995, vol. 35, pp. 367–71.

    CAS  Google Scholar 

  54. J.D. Seo and S.H. Kim: Steel Res., 1999, vol. 70, pp. 203–08.

    CAS  Google Scholar 

  55. H. Hayakawa, M. Hasegawa, K. Oh-nuki, T. Sawai, and M. Iwase: Steel Res. Int., 2006, vol. 77, pp. 14–20.

    CAS  Google Scholar 

  56. X.M. Yang, J.S. Jiao, R.C. Ding, C.B. Shi, and H.J. Guo: ISIJ Int., 2009, vol. 49, pp. 1828–37.

    CAS  Google Scholar 

  57. C. Allertz and S.C. Du: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2609–15.

    Google Scholar 

  58. L. Wang, Y. Wang, K.C. Chou, and S. Seetharaman: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2558–63.

    Google Scholar 

  59. X. Ma, M. Chen, H. Xu, J. Zhu, G. Wang, and B. Zhao: ISIJ Int., 2016, vol. 56, pp. 2126–31.

    CAS  Google Scholar 

  60. T. Talapaneni, N. Yedla, and S. Sarkar: Metall. Res. Technol., 2018, vol. 115, pp. 502–10.

    CAS  Google Scholar 

  61. A.F.T. Condo, C. Allertz, and S.C. Du: Ironmak. Steelmak., 2019, vol. 46, pp. 207–10.

    CAS  Google Scholar 

  62. Y. Park and D.J. Min: ISIJ Int., 2016, vol. 56, pp. 520–26.

    CAS  Google Scholar 

  63. C. Wang, Q. Lu, S. Zhang, and F. Li: Int. J. Min. Met Mater., 2006, vol. 13, pp. 213–17.

    Google Scholar 

  64. Z. Yan, X. Lv, Z. Pang, W. He, D. Liang, and C. Bai: Metall. Mater. Trans. B, 2017, vol. 48B, p. 8.

    Google Scholar 

  65. J. Ling, Z. Pang, Y. Jiang, Z. Yan, and X. Lv: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2786–95.

    Google Scholar 

  66. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg: J. Mach. Learn. Res., 2011, vol. 12, pp. 2825–30.

    Google Scholar 

  67. F.D. Richardson and C.J.B. Fincham: Iron Steel Inst., 1954, vol. 178, pp. 4–15.

    CAS  Google Scholar 

  68. Y. B. Kang: Metall. Mater. Trans. B, 2021, pp. 1–24.

  69. Z. Pang, X. Lv, Z. Yan, Y. Jiang, and J. Ling: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 722–31.

    Google Scholar 

  70. Z. Pang, Y. Jiang, J. Ling, and X. Lv: Int. J. Min. Met. Mater., 2021, vol. 28, pp. 1–10.

    Google Scholar 

  71. Z. Pang, X. Lv, J. Ling, Y. Jiang, and Z. Yan: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 2348–57.

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Key R&D Program of China (Grant No. 2018YFC1900500) and the National Natural Science Foundation of China (Grant No. U1902217).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Yan or Xuewei Lv.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

See Table AI.

Table AI Summary of the Cs Data for the CaO–SiO2–Al2O3–MgO–MnO–FeO–TiO2 System and Its Subsystems

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Ling, J., Guo, J. et al. Sulfide Capacity Model for Multicomponent Molten Slag Based on Artificial Neural Network. Metall Mater Trans B 54, 3324–3342 (2023). https://doi.org/10.1007/s11663-023-02912-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02912-3

Navigation