Skip to main content
Log in

Numerical Study of Swirling Effect on Enhancing the Bath Dynamics in the Top-Submerged-Lance Furnace

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The volume of fluid (VOF) multiphase model is adopted to numerically investigate the gas-melt flow dynamics within an industrial-scale top-submerged-lance (TSL) furnace. After the model validation, the impact of chaotic swirling flow on the bath dynamics (including velocity field, stirring zone, splashing characteristics, and cavity dimensions) in the TSL furnace is explored by incorporating a swirling generator. The results demonstrate that (i) the stirring effect of immersion injections on the majority of molten pool is limited. Compared to the non-swirling flow configuration, the addition of swirling generator increases the stirring zone of the bath by nearly 10 pct; (ii) the swirling generator reduces the penetration depth of the submerged jet into the molten pool but obviously increases the cavity width; (iii) the addition of swirling flow results in a more stable cavity, with a smaller splashing volume and lower splashing height of the melt compared to the TSL with the non-swirling flow configuration. These findings provide a new perspective on the impact of swirling flow configuration in the lance on the multiphase flow characteristics in the bath, which can be valuable for enhancing the understanding and industrial applications of TSL furnace regarding design, operation, and optimization.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Y. Wang, J. Wang, L. Cao, and Z. Cheng: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 3345–63.

    Article  Google Scholar 

  2. E.N. Mounsey and K.R. Robilliard: JOM, 1994, vol. 46, pp. 58–60.

    Article  CAS  Google Scholar 

  3. Y. Wang, S. Wang, Y. Wei, T. Zhang, and S. Li: Appl. Therm. Eng., 2020, vol. 181, p. 115971.

    Article  CAS  Google Scholar 

  4. Z. Wan, S. Yang, D. Kong, D. LI, J. Hu, and H. Wang: Trans. Nonferrous Metals Soc. China, 2022, vol. 33, pp. 2231–44.

  5. J.P. Kapusta: JOM, 2017, vol. 69, pp. 970–79.

    Article  CAS  Google Scholar 

  6. Y.S. Morsi, W. Yang, B.R. Clayton, and A. Acquadro: Can. Metall. Quart, 2000, vol. 39, pp. 87–98.

    Article  CAS  Google Scholar 

  7. M. Akashi, O. Keplinger, N. Shevchenko, S. Anders, M.A. Reuter, and S. Eckert: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 124–39.

    Article  Google Scholar 

  8. P. Kováts, D. Thévenin, and K. Zähringer: Int. J. Multiphase Flow, 2020, vol. 123, p. 103174.

    Article  Google Scholar 

  9. Y.S. Morsi, W. Yang, D. Achim, and A. Acquadro: Tran. Model. Sim., 2000, vol. 30, pp. 95–104.

    Google Scholar 

  10. M. Iguchi, H. Ueda, T. Chihara, and Z. Morita: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 765–72.

    Article  CAS  Google Scholar 

  11. D. Obiso, M. Reuter, and A. Richter: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2386–94.

    Article  Google Scholar 

  12. D. Obiso, M. Reuter, and A. Richter: Metall. Mater. Trans. B, 2021, vol. 52, pp. 3064–77.

    Article  CAS  Google Scholar 

  13. H. Zhao, T. Lu, F. Liu, P. Yin, and S. Wang: JOM, 2019, vol. 71, pp. 1643–49.

    Article  CAS  Google Scholar 

  14. H. Zhao, Y. Xiao, F. Liu, and H.Y. Sohn: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3767–76.

    Article  Google Scholar 

  15. N. Huda, J. Naser, G. Brooks, M. Reuter, and R.W. Matusewicz: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 39–55.

    Article  Google Scholar 

  16. Y. Wang, M. Vanierschot, L. Cao, Z. Cheng, B. Blanpain, and M. Guo: Chem. Eng. Sci., 2018, vol. 192, pp. 1091–1104.

    Article  CAS  Google Scholar 

  17. Y. Wang, L. Cao, M. Vanierschot, Z. Cheng, B. Blanpain, and M. Guo: Chem. Eng. Sci., 2020, vol. 212, p. 115359.

    Article  Google Scholar 

  18. F.R. Menter: AIAA J., 1994, vol. 32, pp. 1598–1605.

    Article  Google Scholar 

  19. J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comput. Phys., 1992, vol. 100, pp. 335–54.

    Article  CAS  Google Scholar 

  20. F. Dong, Z. Wang, T. Cao, and J. Ni: Numer. Heat Transfer Part A, 2019, vol. 76, pp. 220–31.

    Article  CAS  Google Scholar 

  21. D. Obiso, K. Yasuda, A.D. Voigt, M. Schreiner, M.M. Farid, and A. Richter: JOM, 2022, vol. 74, pp. 1533–42.

    Article  Google Scholar 

  22. S. Wang, H. Li, R. Wang, X. Wang, R. Tian, and Q. Sun: Adv. Powder Technol., 2019, vol. 30, pp. 227–39.

    Article  CAS  Google Scholar 

  23. H.K. Moffatt: Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, pp. 3663–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from the Applied Basic Research Project of Yunnan Province, China (No. 202301AT070411).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiliang Yang or Hua Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Yang, S., Bao, G. et al. Numerical Study of Swirling Effect on Enhancing the Bath Dynamics in the Top-Submerged-Lance Furnace. Metall Mater Trans B 54, 3115–3129 (2023). https://doi.org/10.1007/s11663-023-02894-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02894-2

Navigation