Skip to main content
Log in

New Insights Into the Formation Mechanism of TiN–Al2O3 Composite Inclusions in Nickel-Based Superalloys Based on Density Functional Theory

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Al2O3 encapsulated by TiN inclusion is a common inclusion in nickel-based superalloys, which affects the performance of nickel-based superalloys. In this paper, typical Al2O3–TiN composite inclusions in nickel-based superalloy K4169 were observed by scanning electron microscopy and energy-dispersive spectrometer. The first principles calculation based on density functional theory was carried out to study the formation of TiN–Al2O3 composite inclusions at an atomic scale. The surface energy of Al2O3 and the adsorption energy of Ti and N atoms on the Al2O3 surface were estimated, and the stable structures of Ti and N atoms adsorbed on the lowest energy surface of Al2O3 were analyzed. The density of States (DOS) and Partial Density of States (PDOS) were analyzed to investigate the bonding nature and interaction between Ti and N atoms with Al2O3. The adsorption pathway of Ti and N atoms on the Al2O3 surface and the formation mechanism of TiN–Al2O3 composite inclusions was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. R. Schafrik and R. Sprague: Key Eng. Mater., 2008, vol. 380, pp. 113–34.

    CAS  Google Scholar 

  2. X. Xie, J. Qu, J. Du, and Z. Bi: J. Iron Steel Res. Int., 2021, vol. 28, pp. 901–09.

    CAS  Google Scholar 

  3. Z. Gong, Y. Ma, H. Bao, and G. Yang: J. Iron Steel Res. Int., 2021, vol. 28, pp. 910–19.

    CAS  Google Scholar 

  4. Y. Xu, C. Ge, and Q. Shu: J. Iron Steel Res. Int., 2013, vol. 20, pp. 59–63.

    CAS  Google Scholar 

  5. F. Lu, H. Wan, X. Ren, L. Huang, H. Liu, and X. Yi: J. Iron Steel Res. Int., 2022, vol. 29, pp. 1322–33.

    CAS  Google Scholar 

  6. Z.J. Tang, T.M. Guo, S.Z. Kou, Y. Fu, and S. Jin: J. Chin. Soc. Nonferrous Met., 2015, vol. 25, pp. 2403–13.

    CAS  Google Scholar 

  7. J.F. Barker, E.W. Ross, and J.F. Radavich: JOM, 1970, vol. 22, pp. 31–41.

    CAS  Google Scholar 

  8. R. Cozar and A. Pineau: Metall. Trans., 1973, vol. 4, pp. 47–59.

    CAS  Google Scholar 

  9. S. Cao, Y. Yang, B. Chen, K. Liu, Y. Ma, L. Ding, and J. Shi: J. Mater. Sci. Technol., 2021, vol. 86, pp. 260–70.

    CAS  Google Scholar 

  10. S.C. Deevi and V.K. Sikka: Intermetallics, 1996, vol. 4, pp. 357–75.

    CAS  Google Scholar 

  11. X. He, J. Zhang, Y. Peng, J. Li, J. Ding, C. Liu, X. Xia, X. Chen, and Y. Liu: Acta Metall. Sin. Engl. Lett., 2020, vol. 33, pp. 1709–26.

    CAS  Google Scholar 

  12. D. Texier, A.C. Gómez, S. Pierret, J.-M. Franchet, T.M. Pollock, P. Villechaise, and J. Cormier: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1096–09.

    CAS  Google Scholar 

  13. D. Texier, J. Cormier, P. Villechaise, J.-C. Stinville, C.J. Torbet, S. Pierret, and T.M. Pollock: Mater. Sci. Eng. A, 2016, vol. 678, pp. 122–36.

    CAS  Google Scholar 

  14. C. Schröder, U. Fischer, A. Schmidt, G. Schmidt, O. Volkova, and C.G. Aneziris: Adv. Eng. Mater., 2017, vol. 19, p. 1700146.

    Google Scholar 

  15. S. Yang, S. Yang, J. Qu, J. Du, Y. Gu, P. Zhao, and N. Wang: J. Iron Steel Res. Int., 2021, vol. 28, pp. 921–37.

    CAS  Google Scholar 

  16. A. Mitchell: High Temp. Mater. Process., 2005, vol. 24, pp. 101–10.

    CAS  Google Scholar 

  17. J. Campbell and M. Tiryakioğlu: Metall. Mater. Trans. B, 2012, vol. 43, pp. 902–914.

    CAS  Google Scholar 

  18. A. Shi, Z. Wang, C. Shi, L. Guo, C. Guo, and Z. Guo: ISIJ Int., 2020, vol. 60, pp. 205–211.

    CAS  Google Scholar 

  19. L.Z. Wang, X. Li, L.K. Liu, S.F. Yang, and J.Q. Li: Chin. Metall., 2021, vol. 31, pp. 32–38.

    CAS  Google Scholar 

  20. X. Wang, Y. Wang, X. Lian, M. Xu, L. Hou, and Y. Wei: J. Iron Steel Res. Int., 2021, https://doi.org/10.1007/s42243-022-00831-2.

    Article  Google Scholar 

  21. L. Zheng, G. Zhang, M.J. Gorley, T.L. Lee, Z. Li, C. Xiao, and C.C. Tang: Mater. Des., 2021, vol. 207, 109861.

    CAS  Google Scholar 

  22. X. Gao, L. Zhang, X. Qu, Y. Luan, and X. Chen: Vacuum, 2020, vol. 177, 109409.

    CAS  Google Scholar 

  23. G. Zhao, X. Zang, and W. Sun: J. Iron Steel Res. Int., 2021, vol. 28, pp. 98–110.

    CAS  Google Scholar 

  24. J. Wang, L. Wang, J. Li, C. Chen, S. Yang, and X. Li: J. Alloys Compd., 2022, vol. 906, 164281.

    CAS  Google Scholar 

  25. W. Liang, R. Wu, Q. Yuan, and J. Hu: Trans. Indian Inst. Met., 2020, vol. 73, pp. 151–59.

    CAS  Google Scholar 

  26. F. Yang, W. Zhao, Y. Hou, X. Guo, Q. Li, X. Li, J. Yu, Y. Zhong, K. Deng, and Z. Ren: ISIJ Int., 2021, vol. 61, pp. 229–38.

    CAS  Google Scholar 

  27. A. Agnoli, C. Le Gall, J. Thebault, E. Marin, and J. Cormier: Metall. Mater. Trans. A, 2018, vol. 49, pp. 4290–4300.

    CAS  Google Scholar 

  28. Y.L. Jin and S.L. Du: Ironmak. Steelmak., 2018, vol. 45, pp. 224–29.

    CAS  Google Scholar 

  29. W. Yan, Y.Y. Shan, and K. Yang: Metall. Mater. Trans. A, 2006, vol. 37, pp. 2147–58.

    Google Scholar 

  30. L. Cao, G. Wang, Y. Xiao, and R. Yang: J. Iron Steel Res. Int., 2022, vol. 29, pp. 925–38.

    CAS  Google Scholar 

  31. W. Kohn and L.J. Sham: Phys. Rev., 1965, vol. 140, pp. A1133-1138.

    Google Scholar 

  32. Q. Meng, X. Guo, T. Li, B. Shang, L. Ju, and F. Zhang: Isij Int., 2022, vol. 62, pp. 1126–35.

    CAS  Google Scholar 

  33. Y. Xiao, L. Cao, G. Wang, J. Wei, and S. Sridhar: Metall. Mater. Trans. B, 2022, vol. 53, pp. 916–30.

    CAS  Google Scholar 

  34. L.M. Liu, S.Q. Wang, and H.Q. Ye: J. Phys. Condens. Matter, 2003, vol. 15, p. 8103.

    CAS  Google Scholar 

  35. X. Yuan, Y. Xiao, G. Wang, and L. Zhang: Comput. Mater. Sci., 2021, vol. 197, 110570.

    CAS  Google Scholar 

  36. H. Singh, T. Alatarvas, A.A. Kistanov, S.A. Aravindh, S. Wang, L. Zhu, B. Sarpi, Y. Niu, A. Zakharov, F.M.F. de Groot, M. Huttula, W. Cao, and T. Fabritius: Scr. Mater., 2021, vol. 197, 113791.

    CAS  Google Scholar 

  37. W. Wang, H. Zhu, M. Song, J. Li, and Z. Xue: J. Iron Steel Res. Int., 2022, vol. 29, pp. 1464–73.

    CAS  Google Scholar 

  38. J. Wang, S. Song, Z. Xue, D. Tang, G. Tong, and D. Liu: J. Iron Steel Res. Int., 2023, vol. 30, pp. 350–62.

    CAS  Google Scholar 

  39. J. Wang, L. Wang, X. Li, J. Li, C. Chen, C. Li, and C. Zhuang: High Temp. Mater. Process., 2022, vol. 41, pp. 206–15.

    CAS  Google Scholar 

  40. Y. Li, L. Wang, J. Li, C. Chen, C. Li, X. Li, and B. Tuo: J. Mater. Res. Technol., 2022, vol. 19, pp. 578–90.

    CAS  Google Scholar 

  41. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais: Phys. Rev. B, 1992, vol. 46, pp. 6671–87.

    CAS  Google Scholar 

  42. D.J. Chadi: Phys. Rev. B, 1977, vol. 16, pp. 1746–47.

    Google Scholar 

  43. B.L. Bramfitt: Metall. Trans., 1970, vol. 1, pp. 1987–95.

    CAS  Google Scholar 

  44. D. Turnbull and B. Vonnegut: Ind. Eng. Chem., 1952, vol. 44, pp. 1292–98.

    CAS  Google Scholar 

  45. N. Wang, F. Sun, Q. Zhou, D.M. Liao, and Y.W. Yan: Fusion Eng. Des., 2019, vol. 142, pp. 40–44.

    CAS  Google Scholar 

  46. H. Xue, X. Wei, W. Guo, and X. Zhang: J. Alloys Compd., 2020, vol. 820, 153070.

    CAS  Google Scholar 

  47. X.S. Li, H.L. Chen, L.L. Song, G.S. Fu, and H.S. Wang: Spec. Cast. Nonferrous Alloys, 2023, vol. 43, pp. 56–61.

    Google Scholar 

  48. J.W. Gibbs: Am. J. Sci., 1878, vol. 3, pp. 441–58.

    Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (Nos. 52264041, 52064011, and 52274331), Guizhou Provincial Basic Research Program (Natural Science) (Nos. ZK[2021]258, ZK[2023] Zhongdian 020 and ZK[2022]Zhongdian 023), and Guizhou Provincial Key Technology R&D Program (Nos. [2021]342). Additionally, this project is supported by the Research Fund K23-04 of the State Key Laboratory of New Technology in Iron and Steel Metallurgy, University of Science and Technology Beijing, the research program for talented scholars of the Guizhou Institute of Technology with grant No. XJGC20190962, and the Natural Science Research Project of Guizhou Provincial Department of Education ([2022]041). Thanks for the computing support of the State Key Laboratory of Public Big Data, Guizhou University.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linzhu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, L., Chen, C., Li, J. et al. New Insights Into the Formation Mechanism of TiN–Al2O3 Composite Inclusions in Nickel-Based Superalloys Based on Density Functional Theory. Metall Mater Trans B 54, 3078–3091 (2023). https://doi.org/10.1007/s11663-023-02890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02890-6

Navigation