Skip to main content
Log in

Boron Removal From Molten Metallurgical Grade Silicon via Flux-Powder Injection

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This work assessed boron removal from molten metallurgical grade silicon (MG-Si) using highly basic CaO–CaF2 flux-powder together with the injection of gaseous oxygen. The dynamics of both the oxygen bubbles and the injected flux particles were examined in detail. An elevated oxygen partial pressure was achieved at the flux–O2–Si interface and boron removal occurred in a non-equilibrium state. This technique was found to reduce the boron concentration in MG-Si to a level on the order of 1 mass ppm. The effects of the flux particle dynamics at the flux–O2–Si interface close to the exit of the injection nozzle on boron removal were also evaluated. The rate of boron removal was determined based on the flux particle kinetic energy, which in turn depended on the oxygen gas flow rate and the particle size in the injected flux-powder. Increasing the oxygen flow rate increased the kinetic energy of the flux, allowing it to penetrate the O2–Si interface at the exit of the nozzle. This effect produced a new reaction field for further removal of boron from molten MG-Si. In contrast, lower flow rates did not allow penetration through the interface. In this case, reaction field formation was inhibited and the boron removal rate was independent of the flux injection rate. Eight consecutive runs for 60 seconds using optimized parameters decreased the boron concentration in MG-Si from 14 to 1.5 mass ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Reaction area over which boron removal occurs (m2)

A gas-exit :

Cross-sectional gas exit area (opening area of injection nozzle) (m2)

\(A^{\prime}_{{\text{gas-exit}}}\) :

Projected cross-sectional gas exit area at Si–O2 interface (maximum area of reaction field formed by supplying flux-powder to single bubble) (m2)

c :

Sonic velocity in oxygen injected into molten silicon at 1773 K (m s1)

d f :

Diameter of flux-powder particle (μm)

d f,cr. :

Critical diameter of flux-powder particle (μm)

D N,I :

Inner diameter of nozzle used to inject flux-powder and oxygen (mm)

D N,O :

Outer diameter of nozzle used to inject flux-powder and oxygen (mm)

f 1(x):

Correction factor for deviation from spherical particle shape (−)

F buoyancy :

Buoyancy force (N m−3)

F drag :

Drag force imparted to flux particle by silicon melt (N m−3)

F gravity :

Gravitational force acting on flux particle (N m−3)

F interfacial tension :

Interfacial tension force acting on flux particle (N m−3)

\(g\) :

Gravitational acceleration (9.80 m s−2)

k :

Friction factor related to movement of flux particle through silicon melt (−)

\(\overline{k}_{{\text{B}}}\) :

Apparent rate constant for boron removal (m s−1)

[mass ppm B]0 :

Initial boron concentration in MG-Si melt (mass ppm)

[mass ppm B]:

Boron concentration in refined silicon melt (mass ppm)

\({\text{Ma}}^{\prime}\) :

Nominal Mach number (−)

\(\dot{m}_{{\text{f}}}\) :

Flux injection rate (g s−1)

\(\dot{m}_{{{\text{f,cr}}{.}}}\) :

Critical value of flux injection rate (g s−1)

\(Q_{{\text{g}}}\) :

Oxygen flow rate at nozzle-exit in molten silicon at 1773 K (m3 s1)

\(Q_{{\text{g}}}^{{\text{s}}}\) :

Flow rate of oxygen at a temperature and pressure of 298 K and 101.325 kPa, respectively (SCCM: cm3 min1)

Re:

Reynolds number (−)

T :

Absolute temperature (K)

t :

Reaction time (seconds)

u g,0 :

Linear flow velocity of oxygen injected into molten silicon at 1773 K through nozzle (m s−1)

V :

Volume of refined silicon melt (m3)

v f :

Velocity of flux particle relative to silicon melt (m s−1)

v f,0 :

Initial velocity of flux particle relative to silicon melt (m s−1)

x :

Penetration depth (m)

μ :

Mass ratio of injected powder to gas (−)

π :

Circumference ratio (−)

ρ f :

Density of flux particle (g m3)

ρ Si :

Density of silicon melt (g m−3)

σ f -Si :

Flux–Si interfacial tension (J m−2)

σ g -f :

Gas–flux interfacial tension (J m−2)

σ Si -g :

Si–gas interfacial tension (J m−2)

References

  1. M. Schmela, C. Lits, and R. Rossi: Global Market Outlook for Solar Power 2022–2026, SolarPower Europe, Brussels, 2022, pp. 12–21.

    Google Scholar 

  2. B.R. Bathey and M.C. Cretella: J. Mater. Sci., 1982, vol. 17, pp. 3077–96. https://doi.org/10.1007/BF01203469.

    Article  CAS  Google Scholar 

  3. H.D. Banerjee, S. Sen, and H.N. Acharya: Mater. Sci. Eng., 1982, vol. 52, pp. 173–79. https://doi.org/10.1016/0025-5416(82)90046-5.

    Article  CAS  Google Scholar 

  4. D.N. Bose, P.A. Govindacharyulu, and H.D. Banerjee: Sol. Energy Mater., 1982, vol. 7, pp. 319–21. https://doi.org/10.1016/0165-1633(82)90006-5.

    Article  CAS  Google Scholar 

  5. M. Zhong, X. Yang, K. Yasuda, T. Homma, and T. Nohira: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 341–48. https://doi.org/10.1007/s11663-017-1132-4.

    Article  CAS  Google Scholar 

  6. M. Zhong, K. Yasuda, T. Homma, and T. Nohira: Electrochemistry, 2018, vol. 86, pp. 77–81. https://doi.org/10.5796/electrochemistry.17-00087.

    Article  CAS  Google Scholar 

  7. T. Nohira, K. Yasuda, and Y. Ito: Nat. Mater., 2003, vol. 2, pp. 397–401. https://doi.org/10.1038/nmat900.

    Article  CAS  Google Scholar 

  8. F. Chigondo: SILICON, 2018, vol. 10, pp. 789–98. https://doi.org/10.1007/s12633-016-9532-7.

    Article  CAS  Google Scholar 

  9. T. Sakata, T. Miki, and K. Morita: J. Jpn. Inst. Met., 2002, vol. 66, pp. 459–65. https://doi.org/10.2320/jinstmet1952.66.5_459.

    Article  CAS  Google Scholar 

  10. K. Morita and T. Miki: Intermetallics, 2003, vol. 11, pp. 1111–17. https://doi.org/10.1016/S0966-9795(03)00148-1.

    Article  CAS  Google Scholar 

  11. H. Baba, N. Yuge, Y. Sakaguchi, M. Fukai, F. Aratani and Y. Habu: Tenth European Photovoltaic Solar Energy Conference (Proceedings of the International Conference, held at Lisbon, Portugal, 8-12 April 1991), Kluwer Academic Publishers, Dordrecht, 1991, pp. 286–89.

  12. K. Suzuki, T. Sakaguchi, T. Nakagiri, and N. Sano: J. Jpn. Inst. Met., 1990, vol. 54, pp. 161–67. https://doi.org/10.2320/jinstmet1952.54.2_161.

    Article  CAS  Google Scholar 

  13. T. Ikeda and M. Maeda: ISIJ Int., 1992, vol. 32, pp. 635–42. https://doi.org/10.2355/isijinternational.32.635.

    Article  CAS  Google Scholar 

  14. N. Yuge, K. Hanazawa, K. Nishikawa, and H. Terashima: J. Jpn. Inst. Met., 1997, vol. 61, pp. 1086–93. https://doi.org/10.2320/jinstmet1952.61.10_1086.

    Article  CAS  Google Scholar 

  15. R.N. Hall: J. Phys. Chem., 1953, vol. 57, pp. 836–39. https://doi.org/10.1021/j150509a021.

    Article  CAS  Google Scholar 

  16. N. Nakamura, H. Baba, Y. Sakaguchi, and Y. Kato: Mater. Trans., 2004, vol. 45, pp. 858–64. https://doi.org/10.2320/matertrans.45.858.

    Article  CAS  Google Scholar 

  17. H. Nishimoto, Y. Kang, T. Yoshikawa, and K. Morita: High Temp. Mater. Process., 2012, vol. 31, pp. 471–77. https://doi.org/10.1515/htmp-2012-0083.

    Article  CAS  Google Scholar 

  18. M. Tanahashi, T. Fujisawa, and C. Yamauchi: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 629–42. https://doi.org/10.1007/s11663-013-9966-x.

    Article  CAS  Google Scholar 

  19. J. Wu, Y. Zhou, W. Ma, M. Xu, and B. Yang: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 22–26. https://doi.org/10.1007/s11663-016-0860-1.

    Article  CAS  Google Scholar 

  20. Z. Xia, J. Wu, W. Ma, Y. Lei, K. Wei, and Y. Dai: Sep. Purif. Technol., 2017, vol. 187, pp. 25–33. https://doi.org/10.1016/j.seppur.2017.06.037.

    Article  CAS  Google Scholar 

  21. S. Ban-ya: The 122nd, 123rd Nishiyama Memorial Lecture Series, Iron and Steel Institute of Japan, Tokyo, 1988, pp. 1–23.

  22. E.M. Levin, C.R. Robbins, and H.F. McMurdie: Phase Diagrams for Ceramists, The American Ceramic Society, Columbus, OH, 1964, p. 470.

    Google Scholar 

  23. E.M. Levin, C.R. Robbins, and H.F. McMurdie: Phase Diagrams for Ceramists, 1969 Supplement, The American Ceramic Society, Columbus, OH, 1969, p. 446.

    Google Scholar 

  24. R.S. Roth, T. Negas, and L.P. Cook: Phase Diagrams for Ceramists, vol. V, The American Ceramic Society, Columbus, OH, 1983, p. 185.

    Google Scholar 

  25. Verein Deutscher Eisenhüttenleute (VDEh): SLAG ATLAS, 2nd Edition, Verlag Stahleisen GmbH, D-Düsseldorf, Germany, 1995, p. 187.

  26. E.O. Hoefele and J.K. Brimacombe: Metall. Trans. B, 1979, vol. 10B, pp. 631–48. https://doi.org/10.1007/BF02662566.

    Article  CAS  Google Scholar 

  27. Y. Ozawa, K. Mori, and M. Sano: Tetsu-to-Hagané, 1981, vol. 67, pp. 2655–64. https://doi.org/10.2355/tetsutohagane1955.67.16_2655.

    Article  CAS  Google Scholar 

  28. Y. Ozawa, K. Suzuki, and K. Mori: Tetsu-to-Hagané, 1983, vol. 69, pp. 564–69. https://doi.org/10.2355/tetsutohagane1955.69.6_564.

    Article  CAS  Google Scholar 

  29. M. Sano, K. Mori, and T. Sato: Tetsu-to-Hagané, 1977, vol. 63, pp. 2308–15. https://doi.org/10.2355/tetsutohagane1955.63.14_2308.

    Article  CAS  Google Scholar 

  30. K. Mori and M. Sano: Tetsu-to-Hagané, 1981, vol. 67, pp. 672–95. https://doi.org/10.2355/tetsutohagane1955.67.6_672.

    Article  CAS  Google Scholar 

  31. S. Hara and K. Ogino: J. Jpn. Inst. Met., 1988, vol. 52, pp. 1098–1102. https://doi.org/10.2320/jinstmet1952.52.11_1098.

    Article  CAS  Google Scholar 

  32. The Jpn. Inst. Met., ed.: Kinzoku Databook, Edition 3, Maruzen Co. Ltd., Tokyo, 1993, p. 16.

  33. R.B. Bird, W.E. Stewart, and E.N. Lightfoot: Transport Phenomena, Wiley, New York, NY, 1960, pp. 190–96.

    Google Scholar 

  34. T.A. Engh: Scand. J. Metall., 1972, vol. 1, pp. 103–14.

    CAS  Google Scholar 

  35. T. Hibiya, S. Nakamura, K. Mukai, Z.G. Niu, N. Imaishi, S. Nishizawa, S. Yoda, and M. Koyama: Philos. Trans. R. Soc. Lond. A, 1998, vol. 356, pp. 899–909. https://doi.org/10.1098/rsta.1998.0195.

    Article  CAS  Google Scholar 

  36. K. Suzuki, T. Kumagai, and N. Sano: ISIJ Int., 1992, vol. 32, pp. 630–34. https://doi.org/10.2355/isijinternational.32.630.

    Article  CAS  Google Scholar 

  37. T. Ikeda and M. Maeda: Mater. Trans. JIM, 1996, vol. 37, pp. 983–87. https://doi.org/10.2320/matertrans1989.37.983.

    Article  CAS  Google Scholar 

  38. Y. Kato, K. Hanazawa, H. Baba, N. Nakamura, N. Yuge, Y. Sakaguchi, S. Hiwasa, and F. Aratani: Tetsu-to-Hagané, 2000, vol. 86, pp. 717–24. https://doi.org/10.2355/tetsutohagane1955.86.11_717.

    Article  CAS  Google Scholar 

  39. C. Alemany, C. Trassy, B. Pateyron, K.I. Li, and Y. Delannoy: Sol. Energy Mater. Sol. Cells, 2002, vol. 72, pp. 41–48. https://doi.org/10.1016/S0927-0248(01)00148-9.

    Article  CAS  Google Scholar 

  40. N. Nakamura, H. Baba, Y. Sakaguchi, S. Hiwasa, and Y. Kato: J. Jpn. Inst. Met., 2003, vol. 67, pp. 583–89. https://doi.org/10.2320/jinstmet1952.67.10_583.

    Article  CAS  Google Scholar 

  41. S. Rousseau, M. Benmansour, D. Morvan, and J. Amouroux: Sol. Energy Mater. Sol. Cells, 2007, vol. 91, pp. 1906–15. https://doi.org/10.1016/j.solmat.2007.07.010.

    Article  CAS  Google Scholar 

  42. N. Yuge, Y. Sakaguchi, H. Terashima, and F. Aratani: J. Jpn. Inst. Met., 1997, vol. 61, pp. 1094–1100. https://doi.org/10.2320/jinstmet1952.61.10_1094.

    Article  CAS  Google Scholar 

  43. N. Yuge, K. Hanazawa, S. Hiwasa, and Y. Kato: J. Jpn. Inst. Met., 2003, vol. 67, pp. 575–82. https://doi.org/10.2320/jinstmet1952.67.10_575.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the advice provided by Professors Emeriti Chikabumi Yamauchi and Masamichi Sano of Nagoya University during the present work. The assistance of Messrs. Shoji Takai, Hideo Nakahigashi and Yutaka Kadoya with regard to improving the experimental flux-powder injection apparatus used for the experiments is also gratefully acknowledged.

Conflict of interest

The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuru Tanahashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 143 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanahashi, M. Boron Removal From Molten Metallurgical Grade Silicon via Flux-Powder Injection. Metall Mater Trans B 54, 3010–3022 (2023). https://doi.org/10.1007/s11663-023-02884-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02884-4

Navigation