Skip to main content
Log in

Numerical Simulation of Transient Submerged Entry Nozzle Clogging With Euler–Euler and Euler–Lagrange Frameworks

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this paper, the user-defined function (UDF) is firstly used to couple the porous medium model and the Euler–Euler two-fluid model, and the integrated SEN clogging model including the SEN clogging formation and growth, and liquid steel fluid flow dominated by the deposition of non-metallic inclusion particles is established. The simulation results of the SEN clogging under the Euler–Euler and Euler–Lagrange frameworks are both in good agreement with the measured results. With the increase of the distance from the nozzle inlet, the clogging thickness first increases, then remains stable, and slightly decreases. The clogging at the bottom of the nozzle is most serious and presents a conical shape. The polyhedral mesh is better than that of the hexahedral structure mesh for SEN clogging simulation. With the flow space of molten steel extruded and clogged, the molten steel jet is concentrated and strengthened under the constant steel throughput. The average inclination angle of molten steel jet from the nozzle side port first increases and then decreases slightly with time. The volume fraction of the clogging increases rapidly at first, and then the growth rate of the clogging decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Adapted from Ref. [51] with permission of Elsevier

Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(K = {\text{L}},{\text{S}}\) :

Liquid phase and solid phase, respectively, (–)

\(\alpha_{K}\) :

Volume fraction, (–)

\(\rho\) :

Density, (kg/m3)

\(\overrightarrow {u}_{K}\) :

Velocity vector, (m/s)

\(t\) :

Time, (s)

\(\tau_{K}\) :

Shear pressure, (Pa)

\(p\) :

Pressure, (Pa)

\(\overrightarrow {g}\) :

Acceleration of gravity, (m/s2)

\(F_{K}\) :

Interface force between two phases, (N)

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{S_{u} }}\) :

Darcy source terms of continuous phase velocity, (–)

\(F_{{{\text{L}},K}}\) :

Lift force, (N)

\(F_{{{\text{D}},K}}\) :

Drag force, (N)

\(F_{{{\text{V}},K}}\) :

Virtual mass force, (N)

\(F_{{{\text{td}},K}}\) :

Turbulent dispersion force, (N)

\({\text{I}}\) :

Unit tensor, (–)

\(\mu_{{{\text{eff}},K}}\) :

Effective viscosity, (Pa s)

\(\mu_{{\text{L}}}\) :

Molecular viscosity, (Pa s)

\(\mu_{{\text{T}}}\) :

Turbulent viscosity, (Pa s)

\(\mu_{{{\text{BI}}}}\) :

Equivalent viscosity, (Pa s)

\(G_{k}\) :

Production terms of \(k\), (–)

\(G_{\omega }\) :

Production terms of \(\omega\), (–)

\(\Gamma_{k}\) :

Equivalent diffusivity of \(k\), (–)

\(\Gamma_{\omega }\) :

Equivalent diffusivity of \(\omega\), (–)

\(k\) :

Turbulent kinetic energy, (–)

\(\omega\) :

Specific dissipation rate, (–)

\(Y_{k}\) :

Turbulent dissipation term of \(k\), (–)

\(Y_{\omega }\) :

Turbulent dissipation term of \(\omega\), (–)

\(S_{k}\) :

Source terms of \(k\), (–)

\(S_{\omega }\) :

Source terms of \(k\), (–)

\(G_{b}\) :

Buoyancy terms of \(k\), (–)

\(G_{\omega b}\) :

Buoyancy terms of \(\omega\), (–)

\(F_{{\text{A}}}\) :

Adhesion force, (N)

\(F_{{\text{B}}}\) :

Buoyancy force, (N)

\(\kappa_{{\text{S}}}\) :

Friction coefficient, (–)

\(r_{1}\) :

Particle radius, (m)

\(a\) :

Contact radius, (m)

\(R_{{\text{N}}}\) :

Normal ratio, (–)

\(R_{{\text{P}}}\) :

Parallel ratio, (–)

\(R_{{\text{T}}}\) :

Torque ratio, (–)

\(K_{{{\text{per}}}}\) :

Permeability, (–)

\(\overline{{f_{{\text{p}}} }}\) :

Average solid volume fraction of the clog, (–)

\(D_{{{\text{pore}}}}\) :

Diameter of the large hole in the clog, (m)

\(f_{{{\text{clog}}}}\) :

Volume fraction of clog in the cell, (–)

\(f_{{\text{p}}}\) :

The volume fractions of solid phase, (–)

\(S_{k}\) :

Darcy source terms of turbulent kinetic energy, (–)

\(S_{\omega }\) :

Darcy source terms of specific dissipation rate, (–)

\(F_{{\text{P}}}\) :

Pressure gradient force, (N)

\(F_{{\text{g}}}\) :

Gravity, (N)

\(m_{{\text{b}}}\) :

Mass of discrete particles, (kg)

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{u_{{\text{b}}} }}\) :

Velocity of discrete particles, (m/s)

\(C_{{\text{D}}}\) :

Drag force coefficients, (–)

\(C_{{\text{L}}}\) :

Lift force coefficients, (–)

\(C_{{\text{V}}}\) :

Virtual mass force coefficients, (–)

\(d_{{\text{b}}}\) :

Diameter of discrete particles, (m)

\(\rho_{{\text{b}}}\) :

Density of discrete particles, (kg/m3)

\(\overrightarrow {{u^{\prime}}}\) :

Time averaged velocity, (m/s)

\(\xi\) :

Gaussian distributed random number, (m/s)

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{u_{{{\text{in}}}} }}\) :

Average velocity of the inclusion at this point and time, (m/s)

\(u_{{{\text{nor}}}}\) :

Velocity projection of \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{u_{{{\text{in}}}} }}\) in the normal direction of the plane, (m/s)

Φ(·):

Cumulative distribution function of the standard normal distribution, (–)

Ψ(·):

Density function of the standard normal distribution, (–)

\(\Delta f_{{\text{p}}}\) :

Cumulative distribution function of the standard normal distribution, (–)

S :

Area of the mesh surface, (m2)

\(c_{inclusion}\) :

Inclusion concentration, (–)

\(\Delta t\) :

Time step, (s)

\(V_{{{\text{cell}}}}\) :

The mesh volume, (m3)

References

  1. M.J. Long, X.G. Zuo, L.F. Zhang, and D.F. Chen: ISIJ Int., 2010, vol. 50(5), pp. 712–20.

    Article  CAS  Google Scholar 

  2. Y. Vermeulen, B. Coletti, B. Blanpain, P. Wollants, and J. Vleugels: ISIJ Int., 2002, vol. 42(11), pp. 1234–40.

    Article  CAS  Google Scholar 

  3. C.J. Zhang, Y.L. Bi, H.J. Zhang, and J. Yang: Adv. Mater. Res., 2011, vol. 284, pp. 1306–10.

    Google Scholar 

  4. W.J. Lee, J.G. Kim, J.I. Jung, and K.Y. Huh: Steel Res. Int., 2021, vol. 92, p. 2000506.

    Article  Google Scholar 

  5. X.F. Qin, C.G. Cheng, Y.L. Li, W.L. Wu, and Y. Jin: J. Iron. Steel Res. Int., 2021, vol. 29(4), pp. 588–600.

    Article  Google Scholar 

  6. R. Sambasivam: Ironmak. Steelmak., 2006, vol. 33(6), pp. 439–53.

    Article  CAS  Google Scholar 

  7. G.C. Duderstadt, R.K. Iyengar, and J.M. Matesa: JOM, 1968, vol. 20(4), pp. 89–94.

    Article  Google Scholar 

  8. E. Roos, A. Karasev, and P.G. Jonsson: Steel Res. Int., 2015, vol. 86(11), pp. 1279–88.

    Article  CAS  Google Scholar 

  9. J. Szekely and S.T. DiNovo: Metall. Trans., 1974, vol. 5(3), pp. 747–54.

    Article  Google Scholar 

  10. K. Sasai and Y. Mizukami: ISIJ Int., 1995, vol. 35(1), pp. 26–33.

    Article  CAS  Google Scholar 

  11. V. Brabie: ISIJ Int., 1996, vol. 36, pp. 109–12.

    Article  Google Scholar 

  12. R.B. Tuttle, J.D. Smith, and K.D. Peaslee: Metall. Mater. Trans. B., 2007, vol. 38B(1), pp. 101–08.

    Article  CAS  Google Scholar 

  13. R.B. Tuttle, J.D. Smith, and K.D. Peaslee: Metall. Mater. Trans. B, 2005, vol. 36B(6), pp. 885–92.

    Article  CAS  Google Scholar 

  14. H. Bai and B.G. Thomas: Metall. Mater. Trans. B., 2001, vol. 32B(4), pp. 707–22.

    Article  CAS  Google Scholar 

  15. M. Suzuki, Y. Yamaoka, N. Kubo, and M. Suzuki: ISIJ Int., 2002, vol. 42(3), pp. 248–56.

    Article  CAS  Google Scholar 

  16. B.G. Thomas and H. Bai: Effects of Clogging, Argon Injection, and Continuous Casting Conditions on Flow and Air Aspiration in Submerged Entry Nozzles, vol. 18, Iron and Steel Society, Warrendale, 2001.

    Google Scholar 

  17. Z.Y. Deng, M.Y. Zhu, Y.L. Zhou, and S.C. Du: Metall. Mater. Trans. B., 2016, vol. 47B(3), pp. 2015–25.

    Article  Google Scholar 

  18. M. Guingo and J.P. Minier: Phys. Fluids, 2008, vol. 20(5), p. 053303.

    Article  Google Scholar 

  19. L.F. Zhang and B.G. Thomas: Metall. Mater. Trans. B., 2006, vol. 37B(5), pp. 733–61.

    Article  CAS  Google Scholar 

  20. N. Kojola, S. Ekerot, M. Andersson, and P.G. Jönsson: Ironmak. Steelmak., 2011, vol. 38(1), pp. 1–11.

    Article  CAS  Google Scholar 

  21. N. Kojola, S. Ekerot, and P. Jönsson: Ironmak. Steelmak., 2011, vol. 38(2), pp. 81–89.

    Article  CAS  Google Scholar 

  22. M. Mohammadi-Ghaleni, M.A. Zaeem, J.D. Smith, and R. O’Malley: Metall. Mater. Trans. B, 2016, vol. 47B(6), pp. 3384–93.

    Article  Google Scholar 

  23. E. Gutierrez, S. Garcia-Hernandez, and J.D. Barreto: ISIJ Int., 2016, vol. 56(8), pp. 1394–1403.

    Article  CAS  Google Scholar 

  24. P.Y. Ni, L.T.I. Jonsson, M. Ersson, and P.G. Jönsson: ISIJ Int., 2013, vol. 53(5), pp. 792–801.

    Article  CAS  Google Scholar 

  25. D. Eskin, J. Ratulowski, and K. Akbarzadeh: Chem. Eng. Sci., 2011, vol. 66(20), pp. 4561–72.

    Article  CAS  Google Scholar 

  26. C. Henry and J.P. Minier: Prog. Energy Combust. Sci., 2014, vol. 45, pp. 1–53.

    Article  Google Scholar 

  27. P.Y. Ni, L.T. Jonsson, M. Ersson, and P.G. Jönsson: Steel Res. Int., 2017, vol. 88, p. 1800494.

    Google Scholar 

  28. C. Henry, J.P. Minier, and G. Lefèvre: Adv. Colloids Interfaces Sci., 2012, vol. 185, pp. 34–76.

    Article  Google Scholar 

  29. A. Soldati and C. Marchioli: Int. J. Multiph. Flow, 2009, vol. 35(9), pp. 827–39.

    Article  CAS  Google Scholar 

  30. H. Barati, M. Wu, A. Kharicha, and A. Ludwig: Powder Technol., 2018, vol. 329, pp. 181–98.

    Article  CAS  Google Scholar 

  31. C. Caruyer, J.P. Minier, M. Guingo, and C. Henry: Advances in Hydroinformatics, Springer, Singapore, 2014, pp. 597–612.

    Google Scholar 

  32. K. Sasai and Y. Mizukami: ISIJ Int., 2001, vol. 41(11), pp. 1331–39.

    Article  CAS  Google Scholar 

  33. F. Heuzeroth, J. Fritzsche, E. Werzner, M.A.A. Mendes, S. Ray, D. Trimis, and U.A. Peuker: Powder Technol., 2015, vol. 283, pp. 190–98.

    Article  CAS  Google Scholar 

  34. C. Henry, J.P. Minier, and G. Lefèvre: Langmuir, 2012, vol. 28(1), pp. 438–52.

    Article  CAS  Google Scholar 

  35. G. Li, C.X. Lu, M.J. Gan, Q.Q. Wang, and S.P. He: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1436–45.

    Article  Google Scholar 

  36. B. Li, H.B. Lu, Z. Shen, X.H. Sun, Y.B. Zhong, Z.M. Ren, and Z.S. Lei: ISIJ Int., 2019, vol. 59(12), pp. 2264–71.

    Article  CAS  Google Scholar 

  37. H.C. Zhou, L.F. Zhang, Q.Y. Zhou, W. Chen, R.B. Jiang, K. Yin, and W. Yang: Steel Res. Int., 2020, vol. 92.

  38. J.B. Li, T. Zhang, F.B. Gao, Y.K. Gong, and D. Zhou: Int. J. Chem. React. Eng., 2022, pp. 1027–33.

  39. E. Gutierrez, S. Garcia-Hernandez, and J.D. Barreto: Steel Res. Int., 2016, vol. 87(11), pp. 1406–16.

    Article  CAS  Google Scholar 

  40. Y.D. Wu, Z.Q. Liu, B.K. Li, L.J. Xiao, and Y. Gan: Powder Technol., 2022, vol. 402.

  41. S.S. Long, X.G. Yang, J. Yang, and M. Sommerfeld: Chem. Eng. J., 2022, vol. 445.

  42. M. Pourtousi, P. Ganesan, and J.N. Sahu: Measurement, 2015, vol. 76, pp. 255–70.

    Article  Google Scholar 

  43. R.J.G. Lopes and R.M. Quinta-Ferreira: Chem. Eng. J., 2010, vol. 160(1), pp. 293–301.

    Article  CAS  Google Scholar 

  44. W.D. Yang, Z.G. Luo, Y.G. Gu, Z.Y. Liu, and Z.S. Zou: ISIJ Int., 2020, vol. 60(10), pp. 2234–45.

    Article  CAS  Google Scholar 

  45. W.D. Yang, Z.G. Luo, Y.G. Gu, Z.Y. Liu, and Z.S. Zou: Powder Technol., 2019, vol. 361, pp. 769–81.

    Article  Google Scholar 

  46. W.D. Yang, Z.G. Luo, Z.S. Zou, C.X. Zhao, and Y. You: Powder Technol., 2021, vol. 390, pp. 387–400.

    Article  CAS  Google Scholar 

  47. P.Y. Ni, L.T.I. Jonsson, M. Ersson, and P.G. Jönsson: Int. J. Multiph. Flow, 2014, vol. 62, pp. 152–60.

    Article  CAS  Google Scholar 

  48. P.Y. Ni, L.T.I. Jonsson, M. Ersson, and P.G. Jönsson: Int. J. Heat Fluid Flow, 2016, vol. 62, pp. 166–73.

    Article  Google Scholar 

  49. P.Y. Ni, L.T.I. Jonsson, M. Ersson, and P.G. Jönsson: Metall. Mater. Trans. B., 2014, vol. 45B(6), pp. 2414–24.

    Article  Google Scholar 

  50. H. Barati, M.H. Wu, T. Holzmann, A. Kharicha, and A. Ludwig: CFD Modeling and Simulation in Materials Processing, 2018, pp. 149–58.

  51. C. Hua, Y. Bao, and M. Wang: Powder Technol., 2021, vol. 393, pp. 405–20.

    Article  CAS  Google Scholar 

  52. H.A. Jakobsen, S. Grevskott, and H.F. Svendsen: Ind. Eng. Chem. Res., 1997, vol. 36(10), pp. 4052–74.

    Article  CAS  Google Scholar 

  53. F.R. Menter: AIAA J., 1994, vol. 32(8), pp. 1598–1605.

    Article  Google Scholar 

  54. U. Dieguez Salgado, C. Weiß, S.K. Michelic, and C. Bernhard: Metall. Mater. Trans. B, 2018, vol. 49B(4), pp. 1632–43.

    Article  Google Scholar 

  55. X.H. Yang, T.J. Lu, and T.B. Kim: Phys. Lett. A, 2014, vol. 378(30–31), pp. 2308–11.

    Article  CAS  Google Scholar 

  56. D.W. Tang and Z.Z. Cai: Adv. Appl. Math., 2019, vol. 8(4), pp. 12–23.

    Google Scholar 

  57. D. Gidaspow and D.J. Bezburuahr: Department of Chemical Engineering, 1991.

  58. A.D. Burns, T. Frank, and I. Hamill: 5th International Conference on Multiphase Flow, Yokohama, 2004, vol. 4, pp. 1–17.

  59. M. Sosnowski, J. Krzywanski, K. Grabowska, R. Gnatowska, and P. Dančová: The European Physical Journal Conferences, 2018, vol. 180, p. 02096.

    Article  Google Scholar 

  60. W. Wang, Y. Cao, and T. Okaze: Build. Environ., 2021, vol. 195.

  61. A.L. Kulkarni and A.W. Patwardhan: Chem. Eng. Res. Des., 2014, vol. 92(7), pp. 1227–48.

    Article  CAS  Google Scholar 

  62. H. Barati, M. Wu, A. Kharicha, and A. Ludwig: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1428–43.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (U1960202).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JQ., Liu, YB., Sun, Q. et al. Numerical Simulation of Transient Submerged Entry Nozzle Clogging With Euler–Euler and Euler–Lagrange Frameworks. Metall Mater Trans B 54, 2629–2650 (2023). https://doi.org/10.1007/s11663-023-02863-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02863-9

Navigation