Skip to main content
Log in

Reducibility Optimization and Reaction Mechanism of High-Chromium Vanadium–Titanium Magnetite Flux Pellets

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

High-chromium vanadium–titanium magnetite (HVTM) is an exceptional iron source that has not been mined on a large scale. Since using flux pellets facilitates the reduction in emissions and consumption, a reasonable way to utilize HVTM is by smelting it into flux pellets in a blast furnace. This study elucidates the reducibility and reaction mechanism of HVTM flux pellets. The reducibility, phase composition, and morphology were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy spectroscopy analysis (EDS). The influence of basicity on the reduction reaction mechanism was also analyzed, and 30 pct of conventional iron concentrate was added to optimize the reduction performance of pure HVTM flux pellets. The pellets were treated at 900 °C for 180 minutes in a reducing atmosphere of 30 pct CO+70 pct N2. When the basicity (CaO/SiO2) increased from 0.2 to 1.8, the reduction degree of pure HVTM pellets (100 pct HVTM pellets) increased from 60.3 to 85.3 pct. Meanwhile, the reduction degree of HVTM pellets comprising 30 pct conventional iron concentrate (70 pct HVTM pellets) increased from 63.1 to 89.5 pct. The post-reduction compressive strength of 100 pct HVTM pellets decreased from 965.8 to 223.8 N; the post-reduction compressive strength of 70 pct HVTM pellets first decreased from 1454.6 to 223.0 N and then increased to 630.9 N. Moreover, 70 pct HVTM pellets exhibited better reducibility and higher post-reduction compressive strength and could meet the blast furnace standards when the basicity exceeded 1.6 owing to the low TiO2 content and an appropriate amount of liquid phase. The reaction mechanism of 100 pct HVTM pellets was first controlled by the random nucleation and subsequent growth model as well as the two-dimensional diffusion model. However, after increasing the basicity, the reaction mechanism was only characterized by the random nucleation and subsequent growth model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig.16

Similar content being viewed by others

References

  1. X. Fan, M. Gan, T. Jiang, L. Yuan, and X. Chen: J. Cent. South Univ. Sci. Technol., 2010, vol. 17, pp. 732–37.

    Article  CAS  Google Scholar 

  2. K. Bai, L. Liu, Y. Pan, H. Zuo, J. Wang and Q. Xue: Ironmak. Steelmak., 2021, vol. 48, pp. 1048–1063.

    Article  CAS  Google Scholar 

  3. Q. Gao, X. Jiang, H. Zheng, and F. Shen: Minerals, 2018, vol. 8, pp. 389–407.

    Article  CAS  Google Scholar 

  4. M.K. Mohanty, S. Mishra, B. Mishra, and S. Sarkar: Arab. J. Sci. Eng., 2018, vol. 43, pp. 5989–98.

    Article  CAS  Google Scholar 

  5. R.K. Dishwar, A.K. Mandal, and O.P. Sinha: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 617–21.

    Article  Google Scholar 

  6. K.-K. Bai, H.-B. Zuo, W.-G. Liu, J.-S. Wang, J.-S. Chen, and Q.-G. Xue: J. Iron Steel Res. Int., 2021, vol. 29, pp. 1185–93.

    Article  Google Scholar 

  7. P. Prusti, K. Barik, N. Dash, S.K. Biswal, and B.C. Meikap: Powder Technol., 2021, vol. 379, pp. 154–64.

    Article  CAS  Google Scholar 

  8. Y.-B. Zhang, X.-J. Chen, Z.-J. Su, S. Liu, F. Chen, N.-Y. Wu, and T. Jiang: J. Iron Steel Res. Int., 2021, vol. 29, pp. 1381–92.

    Article  Google Scholar 

  9. A.R. Firth and J.F. Garden: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 524–33.

    Article  CAS  Google Scholar 

  10. J. Li, H.-F. An, W.-X. Liu, A.-M. Yang, and M.-S. Chu: J. Iron Steel Res. Int., 2019, vol. 27, pp. 239–47.

    Article  Google Scholar 

  11. F.R. Silva, L.R. Lemos, P. de Freitas Nogueira, and M. Bressan: Metall. Mater. Trans. B, 2020, vol. 52B, pp. 69–76.

    Google Scholar 

  12. L. Zhang, S. Yang, W. Tang, H. Yang and X. Xue: Ironmak. Steelmak., 2019, vol. 47, pp. 821–827.

    Article  Google Scholar 

  13. Z. Gao, G. Cheng, X. Xue, H. Yang, and P. Duan: Steel Res. Int., 2018, vol. 89, p. 1700543.

    Article  Google Scholar 

  14. Y.L. Sui, Y.F. Guo, T. Jiang, and G.Z. Qiu: Ironmak. Steelmak., 2016, vol. 44, pp. 185–92.

    Article  Google Scholar 

  15. W. Zhao, M. Chu, Z. Liu, H. Wang, J. Tang, and Z. Ying: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1878–95.

    Article  Google Scholar 

  16. W. Tang, S. Yang, G. Cheng, Z. Gao, H. Yang, and X. Xue: Minerals, 2018, vol. 8, pp. 263–77.

    Article  Google Scholar 

  17. W. Li, G. Fu, M. Chu, and M. Zhu: Powder Technol., 2020, vol. 360, pp. 555–61.

    Article  CAS  Google Scholar 

  18. G. Cheng, X. Zhang, Z. Gao, H. Yang and X. Xue: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, vol. pp. 1-18.

  19. B. Chen, J. Wen, T. Jiang, L. Li, G. Yang, and T. Zhao: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 178–89.

    Article  Google Scholar 

  20. C.H. Borgert, L.R. Neto, F.F. Grillo, J.R. de Oliveira, J.L. Coleti, J.A.S. Tenório, D.C.R. Espinosa, T.E.A. Frizon, M.V.G. Zimmermann, and E. Junca: Jom, 2022, vol. 74, pp. 439–7.

    Article  CAS  Google Scholar 

  21. S. Prakash, M.C. Goswami, A.K.S. Mahapatra, K.C. Ghosh, S.K. Das, A.N. Sinha, and K.K. Mishra: Ironmak. Steelmak., 2013, vol. 27, pp. 194–201.

    Article  Google Scholar 

  22. R.K. Dishwar and O.P. Sinha: Fuel, 2021, vol. 296, p. 120640.

    Article  CAS  Google Scholar 

  23. X. Gao, J. Wang, W. Lv, J. Xiang, and X. Lv: Can. Metall. Q., 2018, vol. 58, pp. 177–86.

    Article  Google Scholar 

  24. A. Hammam, Y. Li, H. Nie, L. Zan, W. Ding, Y. Ge, M. Li, M. Omran, and Y. Yu: Min. Metall. Explor., 2020, vol. 38, pp. 81–93.

    Google Scholar 

  25. B. Chen, J. Wen, T. Jiang, L. Li, G. Yang, and T. Zhao: Metall. Mater. Trans. B, 2021, vol. 53B, pp. 178–89.

    Google Scholar 

  26. K. Bai, H. Zuo, B. Lv, J. Wang, Y. Pan, and Q. Xue: Jom, 2022, vol. 74, pp. 2010–18.

    Article  CAS  Google Scholar 

  27. Y. Fan, Y. Zhang, Z. Li, Y. Chai, Y. Wang, G. Luo and S. An: Ironmak. Steelmak., 2021, vol. 48, pp. 1158–1168.

    Article  CAS  Google Scholar 

  28. W. Li, G. Fu, M. Chu, and M. Zhu: Powder Technol., 2019, vol. 343, pp. 194–203.

    Article  CAS  Google Scholar 

  29. W. Li, G.-Q. Fu, M.-S. Chu, and M.-Y. Zhu: Int. J. Hydrogen Energy, 2017, vol. 42, pp. 24667–674.

    Article  CAS  Google Scholar 

  30. G.-C. Zhang, G.-P. Luo, P.-F. Jia, Y.-C. Wang, and Y.-F. Chai: High Temp. Mater. Processes (Lond.), 2021, vol. 40, pp. 193–203.

    Article  CAS  Google Scholar 

  31. Z. Yang, Z. Liu, M. Chu, L. Gao, C. Feng, and J. Tang: ISIJ Int., 2021, vol. 61, pp. 1431–38.

    Article  CAS  Google Scholar 

  32. K. Higuchi, S. Matsuzaki, K. Saito, and S. Nomura: ISIJ Int., 2020, vol. 60, pp. 2218–7.

    Article  CAS  Google Scholar 

  33. M. Yang, J. Xiang, C. Bai, X. Zhou, Z. Liu, and X. Lv: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 1436–49.

    Article  Google Scholar 

  34. W.-D. Tang, S.-T. Yang, L.-H. Zhang, Z. Huang, H. Yang, and X.-X. Xue: J. Cent. South Univ., 2019, vol. 26, pp. 132–45.

    Article  CAS  Google Scholar 

  35. S. Xuan, X. Lv, C. Ding, K. Tang, G. Li, G. Pei, and S. Wu: Steel Res. Int., 2018, vol. 89. pp. 1700452–1700460.

    Article  Google Scholar 

  36. C. Ding, X. Lv, Y. Chen, G. Li, W. He, and X. Lv: J. Alloy Compds., 2019, vol. 789, pp. 537–46.

    Article  CAS  Google Scholar 

  37. W.-D. Tang, X.-X. Xue, S.-T. Yang, L.-H. Zhang, and Z. Huang: Int. J. Miner. Met. Mater., 2018, vol. 25, pp. 871–0.

    Article  CAS  Google Scholar 

  38. M. Zhou, S. Yang, T. Jiang, and X. Xue: Jom, 2015, vol. 67, pp. 1203–3.

    Article  CAS  Google Scholar 

  39. G. Qing, K. Wu, Y. Tian, G. An, X. Yuan, D. Xu, and W. Huang: Ironmak. Steelmak., 2016, vol. 45, pp. 83–9.

    Article  Google Scholar 

  40. S. Kimura and A. Muan: Am. Mineral., 1971, vol. 56, pp. 1332–46.

    Google Scholar 

  41. S. Dwarapudi, T.K. Ghosh, A. Shankar, V. Tathavadkar, D. Bhattacharjee, and R. Venugopal: Int. J. Miner. Process., 2011, vol. 99, pp. 43–53.

    Article  CAS  Google Scholar 

  42. T.Y. Malysheva, Y.S. Yusfin, and S.V. Plotnikov: Steel Transl., 2011, vol. 41, pp. 705–07.

    Article  Google Scholar 

  43. J.H. Sharp, G.W. Brindley, and B.N.N. Achar: J. Am. Ceram. Soc., 1966, vol. 49, pp. 379–82.

    Article  CAS  Google Scholar 

  44. W. Lv, X. Lv, Y. Zhang, S. Li, K. Tang, and B. Song: Powder Technol., 2017, vol. 320, pp. 239–48.

    Article  CAS  Google Scholar 

  45. M.B. Gillot, E. Guendouzi, and M. Kharroubi: Mater. Chem. Phys., 1989, vol. 24, pp. 199–208.

    Article  CAS  Google Scholar 

  46. M. Mozammel, S.K. Sadrnezhaad, A. Khoshnevisan, and H. Youzbashizadeh: J. Therm. Anal. Calorim., 2012, vol. 112, pp. 781–9.

    Article  Google Scholar 

  47. A. Khawam and D.R. Flanagan: J. Phys. Chem. B, 2006, vol. 110, pp. 17315–328.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Programs of the National Natural Science Foundation of China (Nos. 52174277 and 52204309).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Jiang or Jing Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Jiang, T., Wen, J. et al. Reducibility Optimization and Reaction Mechanism of High-Chromium Vanadium–Titanium Magnetite Flux Pellets. Metall Mater Trans B 54, 2503–2518 (2023). https://doi.org/10.1007/s11663-023-02851-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02851-z

Navigation