Skip to main content
Log in

Effect of Melt Treatment on Microstructure Evolution and Coarsening Mechanism of A356 Al Alloy During Cooling Slope Rheoprocessing

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The present study reports the effect of melt treatment, i.e., grain refiner (0.15 wt pct of Al–5Ti–1B) and modifier (0.1 wt pct of Al–10Sr) addition on microstructure formation mechanism of A356 Al alloy, processed at semi-solid state. The semi-solid processing is performed here adopting rheoprocessing route, which involves cooling slope processing and subsequent isothermal holding of the generated slurry. Melt treatment prior to slurry generation shows pronounced effect over the morphology of primary solid (Al) and eutectic Si particles, and to quantify that, shape and size of both the particle types are measured in the present work. Moreover, based on the insight obtained in the present study, possible slurry microstructure formation mechanisms, at the onset of melt treatment, are proposed. Furthermore, mathematical model of primary Al formation and its coarsening is developed within the scope of the present work, based on the experimental findings. Understanding of microstructure formation mechanism as well as the developed mathematical correlations between process variables and slurry morphology are found to be helpful to establish process control during Rheo pressure die casting of the generated slurry, to develop automobile, aviation components.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. M. Paes and E.J. Zoqui: Mater. Sci. Eng. A, 2005, vol. 406, pp. 63–73.

    Article  Google Scholar 

  2. O. Lashkari and R. Ghomashchi: J. Mater. Sci., 2006, vol. 41, pp. 5958–965.

    Article  CAS  Google Scholar 

  3. S. Tahamtan, M.A. Golozar, F. Karimzadeh, and B. Niroumand: Mater. Charact., 2008, vol. 59, pp. 223–28.

    Article  CAS  Google Scholar 

  4. D.G. Mallapur, S.A. Kori, and K.R. Udupa: J. Mater. Sci., 2011, vol. 46, pp. 1622–627.

    Article  CAS  Google Scholar 

  5. S. Hegde and K.N. Prabhu: J. Mater. Sci., 2008, vol. 43, pp. 3009–027.

    Article  CAS  Google Scholar 

  6. S. Nafisi, O. Lashkari, R. Ghomashchi, F. Ajersch, and A. Charette: Acta Mater., 2006, vol. 54, pp. 3503–511.

    Article  CAS  Google Scholar 

  7. S. Gencalp and N. Saklakoglu: Mater. Manuf. Processes, 2010, vol. 25, pp. 943–47.

    Article  CAS  Google Scholar 

  8. A.F. Boostani and S. Tahamtan: Mater. Des., 2010, vol. 31, pp. 3769–776.

    Article  Google Scholar 

  9. C.D. Lee: Mater. Sci. Eng. A, 2013, vol. 565, pp. 187–95.

    Article  CAS  Google Scholar 

  10. A.M. Gokhale and G.R. Patel: Mater. Charact., 2005, vol. 54, pp. 13–20.

    Article  CAS  Google Scholar 

  11. D.B. Spencer, M. Mehrabian, and M.C. Flemings: Met. Trans. A, 1972, vol. 3, pp. 1925–932.

    Article  CAS  Google Scholar 

  12. D.H. Kirkwood: Int. Mater. Rev., 1994, vol. 39, pp. 173–89.

    Article  CAS  Google Scholar 

  13. Z. Fan: Int. Mater. Rev., 2002, vol. 47, pp. 49–85.

    Article  CAS  Google Scholar 

  14. H.V. Atkinson: Prog. Mater. Sci., 2005, vol. 50, pp. 341–412.

    Article  CAS  Google Scholar 

  15. F. Taghavi and A. Ghassemi: Mater. Des., 2009, vol. 30, pp. 1762–767.

    Article  CAS  Google Scholar 

  16. Q.D. Qin, Y.G. Zhao, P.J. Cong, W. Zhou, and B. Xu: Mater. Sci. Eng. A, 2007, vol. 444(1–2), pp. 99–103.

    Article  Google Scholar 

  17. W.R. Loue and M. Suery: Mater. Sci. Eng. A, 1995, vol. 203(1–2), pp. 1–3.

    Article  Google Scholar 

  18. R. Canyook, S. Petsut, S. Wisutmethangoon, M.C. Flemings, and J. Wannasin: Trans Nonferrous Met Soc China, 2010, vol. 20, pp. 1649–655.

    Article  CAS  Google Scholar 

  19. R. Canyook, J. Wannasin, S. Wisuthmethangkul, and M.C. Flemings: Acta Mater, 2012, vol. 60, pp. 3501–510.

    Article  CAS  Google Scholar 

  20. E.J. Zoqui, M. Paes, and M.H. Robert: J. Mater. Process. Technol., 2004, vol. 153–154, pp. 300–06.

    Article  Google Scholar 

  21. E.A. Vieira, A.M. Kliauga, and M. Ferrante: J. Mater. Process. Technol., 2004, vol. 155–156, pp. 1623–628.

    Article  Google Scholar 

  22. D. Brabazon, D.J. Browne, and A.J. Carr: Mater. Sci. Eng. A, 2002, vol. 326, pp. 370–81.

    Article  Google Scholar 

  23. P. Das, S.K. Samanta, H. Chattopadhyay, B.B. Sharma, and P. Dutta: Mater. Sci. Technol., 2013, vol. 29(1), pp. 83–92.

    Article  CAS  Google Scholar 

  24. P. Das, S.K. Samanta, H. Chattopadhyay, and P. Dutta: Acta Metall. Sin., 2012, vol. 25(5), pp. 329–39.

    CAS  Google Scholar 

  25. P. Das, S.K. Samanta, and P. Dutta: Measurement, 2014, vol. 55, pp. 605–15.

    Article  Google Scholar 

  26. T. Haga: J. Mater. Process. Technol., 2002, vol. 130–131, pp. 558–61.

    Article  Google Scholar 

  27. T. Haga and S. Suzuki: J. Mater. Process. Technol., 2001, vol. 118, pp. 169–72.

    Article  CAS  Google Scholar 

  28. Y. Birol: J. Mater. Process. Technol., 2007, vol. 186, pp. 94–101.

    Article  CAS  Google Scholar 

  29. E.C. Legoretta, H.V. Atkinson, and H. Jones: J. Mater. Sci., 2008, vol. 43, pp. 5456–469.

    Article  CAS  Google Scholar 

  30. S. Nafisi and R. Ghomashchi: Mater. Sci. Eng. A, 2006, vol. 415, pp. 273–85.

    Article  Google Scholar 

  31. A.K. Dahle, K. Nogita, J.W. Zindel, S.D. Mcdonald, and L.M. Hogan: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 949–60.

    Article  CAS  Google Scholar 

  32. J.C. Labiche, O. Mathon, S. Pascarelli, M.A. Newton, G.G. Ferre, C. Curfs, G. Vaughan, A. Homs, and D.F. Carreiras: Rev. Sci. Instrum., 2007, vol. 78, p. 091301.

    Article  Google Scholar 

  33. R.H. Mathiesen, L. Arnberg, F. Mo, T. Weitkamp, and A. Snigirev: Phys. Rev. Lett., 1999, vol. 83, pp. 5062–065.

    Article  CAS  Google Scholar 

  34. R.H. Mathiesen, L. Arnberg, K. Ramsoskar, T. Weitkamp, C. Rau, and A. Snigirev: Metall. Mater. Trans B, 2002, vol. 33B, pp. 613–23.

    Article  CAS  Google Scholar 

  35. D. Ruvalcaba, R.H. Mathiesen, D.G. Eskin, L. Arnberg, and L. Katgerman: Acta Mater., 2007, vol. 55, pp. 4287–292.

    Article  CAS  Google Scholar 

  36. N. Iqbal, N.H. Vandijk, S.E. Offerman, M.P. Moret, L. Katgerman, and G.J. Kearley: Acta Mater., 2005, vol. 53, pp. 2875–880.

    Article  CAS  Google Scholar 

  37. O. Ludwig, M. Dimichiel, L. Salvo, M. Suery, and P. Falus: Mater. Trans A, 2005, vol. 36, pp. 1515–523.

    Article  Google Scholar 

  38. N. Limodin, L. Salvo, E. Boller, M. Suery, M. Felberbaum, S. Gailliegue, and K. Mad: Acta Mater., 2009, vol. 57, pp. 2300–310.

    Article  CAS  Google Scholar 

  39. D. Tolnai, P. Townsend, G. Requena, L. Salvo, J. Lendvai, and H.P. Degischer: Acta Mater., 2012, vol. 60, pp. 2568–577.

    Article  CAS  Google Scholar 

  40. W. Puttgen, B. Hallstedt, W. Bleck, and P.J. Uggowitzer: Acta Mater., 2007, vol. 55, pp. 1033–042.

    Article  Google Scholar 

  41. D.I. Uhlenhaut, J. Kradolfer, W. Puttgen, J.F. Loffler, and P.J. Uggowitzer: Acta Mater, 2006, vol. 54, pp. 2727–734.

    Article  CAS  Google Scholar 

  42. W. Puttgen, B. Hallstedt, W. Bleck, J.F. Loffler, and P.J. Uggowitzer: Acta Mater, 2007, vol. 55, pp. 6553–560.

    Article  Google Scholar 

  43. P. Das, B. Bhuniya, S.K. Samanta, and P. Dutta: J. Mater. Process. Tech., 2019, vol. 271, pp. 293–311.

    Article  CAS  Google Scholar 

  44. P. Das, S.K. Samanta, S. Bera, and P. Dutta: Metall. Mater. Trans. A., 2016, vol. 47A, pp. 2243–256.

    Article  Google Scholar 

  45. A. Ohno, T. Motegi, and H. Soda: Trans. Iron Steel Inst. Jpn., 1971, vol. 18, pp. 11–4.

    Google Scholar 

  46. P. Das, S.K. Samanta, B.R.K. Venkatpathi, H. Chattopadhyay, and P. Dutta: Trans. Indian Inst. Met, 2012, vol. 65, pp. 669–72.

    Article  CAS  Google Scholar 

  47. P. Das, S.K. Samanta, P. Kumar, and P. Dutta: ISIJ Int., 2014, vol. 54, pp. 1601–610.

    Article  CAS  Google Scholar 

  48. M.H. Robert, E.J. Zoqui, F. Tanabe, and T. Motegi: J. Achiev. Mater. Manuf. Eng., 2007, vol. 20, pp. 19–26.

    Google Scholar 

  49. S.Z. Lu and A. Hellawell: Met. Trans. A, 1987, vol. 18, pp. 1721–733.

    Article  Google Scholar 

  50. M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, and J. Banhart: Acta Mater., 2012, vol. 60, pp. 3920–928.

    Article  CAS  Google Scholar 

  51. L. Qiyang, L. Qingchun, and L. Qiful: Acta Metall., 1991, vol. 39, p. 2497.

    Article  Google Scholar 

  52. S. Nafisi and R. Ghomashchi: J. Mater. Process. Technol., 2006, vol. 174, pp. 371–83.

    Article  CAS  Google Scholar 

  53. S. Nafisi and R. Ghomashchi: Mater. Charact., 2006, vol. 57, pp. 371–85.

    Article  CAS  Google Scholar 

  54. K.T. Kashyap and T. Chandrashekar: Bull. Mater. Sci., 2001, vol. 24, pp. 345–53.

    Article  CAS  Google Scholar 

  55. M. Easton and D.S. John: Met. Trans. A, 1999, vol. 30, pp. 1613–623.

    Article  Google Scholar 

  56. M. Mingtao, G. Hanjie, W. Fei, and S. Xiaolin: ISIJ Int., 2019, vol. 59, pp. 848–57.

    Article  Google Scholar 

  57. P. Das and P. Dutta: Comput. Mater. Sci., 2020, vol. 184, p. 09856.

    Article  Google Scholar 

  58. I. Vusanovic, D. Voronjec, and M.J.M. Krane: Facta Univer. Ser., 2001, vol. 1(8), pp. 965–80.

    Google Scholar 

  59. I. Vusanovic, B. Sarler, and M.J.M. Krane: Mater. Sci. Eng. A, 2005, vol. 413–414, pp. 217–22.

    Article  Google Scholar 

  60. P. Das, S. Dutta, and S.K. Samanta: Proc. Inst. Mech. Eng. Part B, 2013, vol. 227, p. 1474.

    Article  CAS  Google Scholar 

  61. C.G. Kang, S.W. Youn, and P.K. Seo: J. Mater. Eng. Perf., 2004, vol. 13, pp. 172–84.

    Article  CAS  Google Scholar 

  62. R.A. Martinez and M.C. Flemings: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2205–210.

    Article  CAS  Google Scholar 

  63. H.M. Guo, X.Q. Luo, A.S. Zhang, and X.J. Yang: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. 1361–366.

    Article  CAS  Google Scholar 

  64. G. Wan and P.R. Sahm: Acta Metall. Mater., 1990, vol. 38, pp. 2367–372.

    Article  CAS  Google Scholar 

  65. E. Tzimas and A. Zavaliangos: Mater. Sci. Eng. A, 2000, vol. 289, pp. 228–40.

    Article  Google Scholar 

  66. H.V. Atkinson and D. Liu: Mater. Sci. Eng. A, 2008, vol. 496, pp. 439–46.

    Article  Google Scholar 

  67. E.J. Zoqui, M.T. Shehata, M. Paes, V. Kao, and E.E. Sadiqi: Mater. Sci. Eng. A, 2002, vol. 325, pp. 38–53.

    Article  Google Scholar 

  68. G. Yan, S. Zhao, S. Ma, and H. Shou: Mater. Charact., 2012, vol. 69, pp. 45–51.

    Article  CAS  Google Scholar 

  69. A.H. Ardakan and F. Ajersch: Mater. Charact., 2010, vol. 61, pp. 778–85.

    Article  Google Scholar 

  70. P. Das and P. Dutta: Comput. Mater. Sci., 2016, vol. 125, pp. 8–19.

    Article  CAS  Google Scholar 

  71. L. Zhang, X. Dong, J. Li, K. Li, Z. Zhang, W. Wang, and Z. Fan: J. Cent. South Univ. Technol., 2011, vol. 18, pp. 1789–794.

    Article  Google Scholar 

  72. P. Das, S.K. Samanta, B. Mondal, and P. Dutta: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 1925–944.

    Article  Google Scholar 

  73. R. Ritwik, A.K.P. Rao, and B.K. Dhindaw: J. Mater. Eng. Perform., 2013, vol. 22, pp. 2487–492.

    Article  CAS  Google Scholar 

  74. E. Ogris, A. Wahlen, H. Luchinger, and P.J. Uggowitzer: J. Light Met., 2002, vol. 2, pp. 263–69.

    Article  Google Scholar 

  75. E. Werner: Z. Metallkunde, 1990, vol. 81, pp. 790–98.

    CAS  Google Scholar 

  76. H.F. Bishop, C.G. Ackerlind, and W.S. Pellini: Trans. AFS, 1957, vol. 65, pp. 247–58.

    Google Scholar 

  77. D.C.G. Lees: The Journal of the Institute of Metals, 1946, vol. 72, p. 343.

    CAS  Google Scholar 

  78. Z.X. Li, L.T. Ju, X.S. Sheng, T.H. Tao, and J.J. Ze: J. Mater. Process. Technol., 2009, vol. 209, pp. 2092–098.

    Article  Google Scholar 

  79. L.Y. Zhang, B.D. Zhou, Z.J. Zhan, Y.Z. Jia, S.F. Shan, B.Q. Zhang, and W.K. Wang: Mater. Sci. Eng. A, 2007, vol. 448, pp. 361–65.

    Article  Google Scholar 

  80. R.Y. Wang, W.H. Lu, and L.M. Hogan: Metall Mater Trans A, 1997, vol. 28B, pp. 1233–243.

    Article  Google Scholar 

  81. H. Singh, A.M. Gokhale, A. Tewari, S. Zhang, and Y. Mao: Scripta Mater, 2009, vol. 61, pp. 441–44.

    Article  CAS  Google Scholar 

  82. S. Wang, R. Ma, Y. Wang, and L. Yang: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 1264–269.

    Article  CAS  Google Scholar 

  83. H.C. Liao, M. Zhang, J.J. Bi, K. Ding, X. Xi, and S.Q. Wu: Trans. Nonferrous Met. Soc. China, 2010, vol. 26, pp. 1089–097.

    CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank SERB, DST, Government of India and CSIR, Government of India for their financial support to this work vide grant no. SB/EMEQ-449/2014 and OLP121212, respectively. The author would also like to thank all the members of erstwhile NNMT group, CSIR-CMERI for their cooperation to execute the casting experiments and AFMM, IISc for extending characterization facilities. Finally, the author would like to express his gratitude to Director, IISc for his encouragements.

Conflict of interest

The corresponding author declares that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prosenjit Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 15, 2022; accepted February 26, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P. Effect of Melt Treatment on Microstructure Evolution and Coarsening Mechanism of A356 Al Alloy During Cooling Slope Rheoprocessing. Metall Mater Trans B 54, 1383–1407 (2023). https://doi.org/10.1007/s11663-023-02768-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02768-7

Navigation