Skip to main content
Log in

Cooling slope casting to obtain thixotropic feedstock II: observations with A356 alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

New Rheocasting (NRC) is a recently developed semisolid processing route. There are two versions of this route. In one, molten alloy is poured directly into a mould and through careful temperature control during cooling a spheroidal semisolid microstructure is achieved, before the material in the mould is upended into a shot sleeve and hence forced into a die. Alternatively, the molten alloy is poured onto a cooling slope and thence into a mould before processing. The aim of the work described in this paper, and its companion, was to develop the understanding of the microstructural development during the initial stages of this process, i.e. in the mould before processing and with the cooling slope/mould combination. In the previous paper, an analogue system based on aqueous ammonium chloride has been used to visualise what happens when an alloy is poured into a tilted mould with a chill wall, which acts to mimic the mould and the cooling slope in the NRC process. In this companion paper, the results for pouring A356 aluminium alloy directly into a mould, and also via a cooling slope into a mould, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Legoretta EC, Atkinson HV, Jones H (submitted) J Mater Sci. doi:https://doi.org/10.1007/s10853-008-2828-2

    Article  CAS  Google Scholar 

  2. Spencer DB, Mehrabian R, Flemings MC (1972) Metall Trans 3:1925. doi:https://doi.org/10.1007/BF02642580

    Article  CAS  Google Scholar 

  3. Flemings MC (1991) Metall Trans A22:957

    Article  Google Scholar 

  4. Kirkwood DH (1994) Int Mater Rev 39:173

    Article  CAS  Google Scholar 

  5. de Figuredo A (ed) (2001) Science and technology of semi-solid processing. North American Die Casting Association, Rosemont, IL

    Google Scholar 

  6. Fan Z (2002) Int Mater Rev 47:49. doi:https://doi.org/10.1179/095066001225001076

    Article  CAS  Google Scholar 

  7. Atkinson HV (2005) Prog Mater Sci 50:341. doi:https://doi.org/10.1016/j.pmatsci.2004.04.003

    Article  CAS  Google Scholar 

  8. Kaneuchi T, Shibata R, Ozawa M (2002) In: Tsutsui Y, Kiuchi M, Ichikawa K (eds) Proceedings of the 7th international conference on advanced semi-solid processing of alloys and composites, Tsukuba, Japan, 2002. National Institute of Advanced Science and Technology and the Japan Society for Technology of Plasticity, Japan, p 145

  9. Mitsuru A, Hiroto S, Yasunori H, Tatsuo S, Satoru S, Atsushi Y (1996) Patent EP 0745694 A1

  10. Hall K, Kaufmann H, Mundl A (2000) In: Chiarmetta GL, Rosso M (eds) Proceedings of the 6th international conference on semi-solid processing of alloys and composites, Turin, Italy, 2000. Edimet Spa, Brescia, Italy, p 23

  11. Kaufmann H, Wabusseg H, Uggowitzer PJ (2000) Aluminium 76:70

    CAS  Google Scholar 

  12. Xia K, Tausig G (1998) Mater Sci Eng A 246:1. doi:https://doi.org/10.1016/S0921-5093(97)00758-2

    Article  Google Scholar 

  13. Uggowitzer PJ, Kaufmann H (2004) Steel Res Int 75:525

    Article  CAS  Google Scholar 

  14. Zhu MF, Kim JM, Hong CP (2001) ISIJ Int 41:992. doi:https://doi.org/10.2355/isijinternational.41.992

    Article  CAS  Google Scholar 

  15. Mitsuru A, Hiroto S, Yasunori H, Tatsuo S, Satoru S, Atsushi Y (1990) Patent EP 0,392,998A1

  16. Lee SY, Lee SM, Hong CP (2000) ISIJ Int 40:48. doi:https://doi.org/10.2355/isijinternational.40.48

    Article  CAS  Google Scholar 

  17. Haga T, Kouda T, Motoyama H, Inoue N, Suzuki S (1998) In: Proceedings of the ICAA7, aluminium alloys: their physical and mechanical properties, Charlottesville, VA. Trans Tech Publications 2000 Part 1, Zurich, p 327

  18. Haga T (2002) J Mater Process Technol 130–131:558. doi:https://doi.org/10.1016/S0924-0136(02)00765-3

    Article  Google Scholar 

  19. Lima Filho AD, Yamasaki MI (2006) Solid State Phenom 116–117:433

    Article  Google Scholar 

  20. Ashouri S, Nili-Ahmadabadi M (2006) Solid State Phenom 116–117:201

    Article  Google Scholar 

  21. Birol Y (2006) Mater Sci Forum 519–521(Part 1–2):1919

    Article  Google Scholar 

  22. Birol Y (2007) J Mater Process Technol 186:94. doi:https://doi.org/10.1016/j.jmatprotec.2006.12.021

    Article  CAS  Google Scholar 

  23. Liu D, Atkinson HV, Kapranos P, Jirattiticharoean W, Jones H (2003) Mater Sci Eng A 361:213. doi:https://doi.org/10.1016/S0921-5093(03)00528-8

    Article  Google Scholar 

  24. Seidl I, Kopp R (2004) Steel Res Int 75:545

    Article  CAS  Google Scholar 

  25. Pahlevani F, Nili-Ahmadabadi M (2004) Int J Cast Met Res 17:157. doi:https://doi.org/10.1179/136404604225020560

    Article  CAS  Google Scholar 

  26. Huang WD, Wang WL, Lin X, Wang M (2006) Solid State Phenom 116–117:193

    Article  Google Scholar 

  27. Davis JR (ed) (1993) Speciality handbook ASM aluminium and aluminium alloys. ASM International, Materials Park, p 639

  28. Haga T, Kapranos P (2002) J Mater Process Technol 118:581. doi:https://doi.org/10.1016/S0924-0136(02)00817-8

    Article  Google Scholar 

  29. Piao PY, Motegi T (2004) J Jpn Inst Met 68:228. doi:https://doi.org/10.2320/jinstmet.68.228

    Article  CAS  Google Scholar 

  30. Haga T, Suzuki S (2001) J Mater Process Technol 118:169. doi:https://doi.org/10.1016/S0924-0136(01)00888-3

    Article  CAS  Google Scholar 

  31. Southin RT (1967) The solidification of metals. Iron and Steel Institute, London, p 306

  32. Flemings MC (1974) Solidification processing. McGraw-Hill Book Co, New York

    Book  Google Scholar 

Download references

Acknowledgements

E.C.L. would like to acknowledge financial support provided by CONACyt and SEP and also the Universidad Autónoma del Estado de Hidalgo for support. The authors are grateful to the Department of Engineering Materials at the University of Sheffield for the provision of laboratory facilities. In addition, we would like to thank Prof. T. Haga who built the initial version of cooling slope equipment at Sheffield University during a sabbatical period from the University of Osaka, and Dr. Plato Kapranos and Dr. Worawit Jirattiticharoean for experimental assistance. H.V.A. would like to thank the University of Leicester for sabbatical leave.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. V. Atkinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legoretta, E.C., Atkinson, H.V. & Jones, H. Cooling slope casting to obtain thixotropic feedstock II: observations with A356 alloy. J Mater Sci 43, 5456–5469 (2008). https://doi.org/10.1007/s10853-008-2829-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2829-1

Keywords

Navigation