Skip to main content
Log in

Numerical Simulation of Inclusion Removal by Bubble Injection in the Submerged Nozzle With Swirling Flow

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The removal of inclusions is of great importance in metallurgical industry. In this paper, a novel swirling flow generator (SFG) is intended to be installed around the inlet of the submerge entry nozzle (SEN) in the tundish to generate a swirling flow in the SEN by utilizing gravitational potential energy. Herein, the motion and interaction between bubbles and inclusion particles in the swirling flow field are simulated by Discrete Phase Model (DPM) in the three-phase fluid flow. In the swirling flow, collision between the inclusions particles and bubbles is governed by a self-developed User-Defined Function (UDF) program. The radial pressure gradient force causes inclusion particles to move toward the center. In the central area in the SEN, the collision rate between inclusion particles and bubbles increases significantly. Thus, bubble injection in swirling flow is beneficial to the removal of inclusion particles. The removal efficiency of inclusion particles of various sizes in tundish with SFG is investigated in this paper, which is valuable for the design of the industrial tundish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R. Schwarze, H. Chaves, and C. Bruecker: Steel Res. Int., 2009, vol. 80, pp. 834–40.

    CAS  Google Scholar 

  2. S. Yokoya, Y. Asako, S. Hara, and J. Szekely: ISIJ Int., 1994, vol. 34, pp. 883–88.

    Article  CAS  Google Scholar 

  3. R. Sambasivam: Ironmak. Steelmak, 2006, vol. 33, pp. 439–53.

    Article  CAS  Google Scholar 

  4. Y. Tsukaguchi, H. Hayashi, H. Kurimoto, S. Yokoya, K. Marukawa, and T. Tanaka: ISIJ Int., 2010, vol. 50, pp. 721–29.

    Article  CAS  Google Scholar 

  5. D.W. Li, Z.J. Su, J. Chen, Q. Wang, Y. Yang, K. Nakajima, K. Marukawa, and J.C. He: ISIJ Int., 2013, vol. 53, pp. 187–1194.

    Google Scholar 

  6. Y. Miki, H. Kitaoka, T. Sakuraya, and T. Fujii: ISIJ Int., 1992, vol. 32, pp. 142–49.

    Article  CAS  Google Scholar 

  7. N. Sonoyama, M. Iguchi, S. Takagi, and S. Yokoya: Tetsu-to-Hagane, 2004, vol. 90, pp. 312–16.

    Article  CAS  Google Scholar 

  8. Y. Yang, P.G. Jonsson, M. Ersson, Z.J. Su, J.C. He, and K. Nakajima: Steel Res. Int., 2015, vol. 86, pp. 341–60.

    Article  CAS  Google Scholar 

  9. M.J. Zhang, H.Z. Gu, A. Huang, H.X. Zhu, and C.J. Deng: J. Min. Metall. B, 2011, vol. 47, pp. 37–44.

    Article  CAS  Google Scholar 

  10. J. Aoki, L.F. Zhang, and B.G. Thomas: Iron Steel Technol., 2005.

  11. F. Magaud, A.F. Najafi, J.R. Angilella, and M. Souhar: J. Fluids Eng., 2003, vol. 125, pp. 239–46.

    Article  CAS  Google Scholar 

  12. J.C. Yan, T. Li, S.F. Yang, Z.Q. Shang, and M. Tan: Steel Res. Int., 2020, vol. 91, p. 1900578.

    Article  CAS  Google Scholar 

  13. M. Kronbichler, T. Heister, and W. Bangerth: Geophys. J. Int., 2012, vol. 191, pp. 12–29.

    Article  Google Scholar 

  14. B.E. Launder and D.B. Spalding: Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, Pergamon, New York, 1983, pp. 96–116.

    Book  Google Scholar 

  15. X.B. Li, H.X. Yuan, and Z.W. Cao: Metal Mine, 2007, vol. 12, pp. 101–03.

    Google Scholar 

  16. X.D. Wu, C. Zhou, Y.S. An, X.W. Liu, and X.Q. Cen: Nat. Gas Ind., 2016, vol. 3, pp. 339–45.

    Google Scholar 

  17. D.Y. Liu: Two-Phase Fluid Dynamics, Higher Education Press, Beijing, 1993, pp. 16–74.

    Google Scholar 

  18. L.J. Guo: Two-Phase and Multi-phase Fluid Dynamics, Xi’an Jiaotong University Press, Xi’an, 2002, pp. 323–77.

    Google Scholar 

  19. S.I. Rubinow and J.B. Keller: J. Fluid Mech., 1961, vol. 11, pp. 447–59.

    Article  Google Scholar 

  20. P.G. Saffman: J. Fluid Mech., 1965, vol. 22, pp. 385–400.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51874061), Chongqing Natural Science Foundation (No. cstc2020jcjy-msxmX0449), and Venture & Innovation Support Program for Chongqing Overseas Returnees (cx2019026).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Li or Jun-guo Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, Zy., Cui, Hn., Li, T. et al. Numerical Simulation of Inclusion Removal by Bubble Injection in the Submerged Nozzle With Swirling Flow. Metall Mater Trans B 53, 2570–2586 (2022). https://doi.org/10.1007/s11663-022-02552-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02552-z

Navigation