Skip to main content
Log in

Modeling Inclusion Removal when Using Micro-bubble Swarm in a Full-Scale Tundish with an Impact Pad

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Gas was injected into the upper part of a water model ladle shroud, producing micro-bubbles by the shearing action of the high-speed entry flow of water, combined with subsequent bubble breaking actions of turbulence. An impact pad was used in favor of a standard turbulence inhibitor, to maintain the integrity of the micro-bubbles, and assure their wide distribution within the tundish. The effects of these two systems on removing small inclusions were investigated, and a numerical model was developed to simulate the motion behaviors of bubbles in the tundish, considering bubble coalescence. Both the turbulence inhibitor and the impact pad performed similar on flow improvement, but the impact pad effectively restrained coalescence between bubbles, leading to a 55.3 pct drop in the average bubble size within the tundish, and generating a 53.9 pct reduction in the residual numbers of inclusions below 51 μm diameter, by contrast with the turbulence inhibitor data. The impact pad fits well with gas bubbling for deep cleaning the liquid steel in tundish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

C D :

Drag coefficient (–)

C VM :

Virtual mass factor (–)

C L :

Lift coefficient (–)

d b :

Diameter of bubble (m)

g :

Gravity acceleration (m2/s)

G k :

Generation rate of turbulence kinetic energy (–)

k :

Turbulent kinetic energy (m2/s2)

\(\dot{m}_{{\text{b}}}\) :

Dimensionless mean residence time (–)

m p :

Mass of particles (kg)

n i :

Number density of inclusions (number/m3)

N p :

Total number of inclusions (–)

P :

Pressure (Pa)

Q a :

Active flow rate (m3/s)

Q i :

Inlet flow rate (m3/s)

Q s :

Volume flow rate of inclusion suspension (m3/s)

Re :

Reynolds number (–)

r 1, r 2 :

Radius of two colliding bubbles (m)

Δt :

Time step (s)

u, u b :

Velocity of fluid flow and bubbles (m/s)

u rel :

Relative velocity between two colliding bubbles (m/s)

V cell :

Volume of the cell (m3)

V s :

Volume of inclusion suspension (m3)

We :

Weber number (–)

ρ, ρ g, ρ p :

Densities of liquid, gas, and particle (kg/m3)

ε :

Turbulent dissipation rate (m2/s3)

\(\overline{\theta }_{\text{c}}\) :

Dimensionless mean residence time (–)

θ min, θ max :

Dimensionless responds time and peak time (–)

σ ε :

Turbulent Prandtl number for turbulent dissipation rate (–)

μ eff, μ, μ t :

Effective viscosity, laminar viscosity, and turbulent viscosity (kg/m-s)

RTD:

Residence time distribution

SEN:

Submerged Entry Nozzle

References

  1. S. Tokuda, I. Muto, Y. Sugawara, and N. Hara: Corros. Sci., 2020, vol. 167, p. 108506.

    Article  CAS  Google Scholar 

  2. D. Tang and P.C. Pistorius: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 580–5.

    Article  Google Scholar 

  3. K. Chattopadhyay, R.I.L. Guthrie, and M. Isac: ISIJ Int., 2010, vol. 50, pp. 331–48.

    Article  CAS  Google Scholar 

  4. S. Chang, X.K. Cao, C.H. Hsin, Z.S. Zou, M. Isac, and R.I.L. Guthrie: ISIJ Int., 2016, vol. 56, pp. 1188–97.

    Article  CAS  Google Scholar 

  5. D. Mazumdar: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 23–9.

    Article  Google Scholar 

  6. J.H. Park and L.F. Zhang: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 2453–82.

    Article  Google Scholar 

  7. A. Cwudzinski: Steel Res. Int., 2015, vol. 86, pp. 972–83.

    Article  CAS  Google Scholar 

  8. J.S. Zhang, Q. Liu, S.F. Yang, Z.X. Cheng, J.S. Li, and Z.Y. Jiang: ISIJ Int., 2019, vol. 59, pp. 1167–77.

    Article  CAS  Google Scholar 

  9. S.K. Ray, M. Isac, and R.I.L. Guthrie: Ironmak. Steelmak., 2011, vol. 38, pp. 173–80.

    Article  CAS  Google Scholar 

  10. M.R.M. Yazdi, A.R.F. Khorasani, and S. Talebi: Can. Metall. Q., 2019, vol. 58, pp. 379–88.

    Article  Google Scholar 

  11. P.Y. Ni, L.T.I. Jonsson, M. Ersson, and P.G. Jonsson: Steel Res. Int., 2016, vol. 87, pp. 1356–65.

    Article  CAS  Google Scholar 

  12. S. Lopez-Ramirez, J. D. J. Barreto, Palafox-Ramos, R. D. Morales and D. Zacharias: Metall. Mater. Trans. B 2001, vol. 32B, pp. 615–27.

  13. H.J. Yang, S. Vanka, and B.G. Thomas: JOM., 2018, vol. 70, pp. 2148–56.

    Article  CAS  Google Scholar 

  14. S. Chang, L.C. Zhong, and Z.Z. Zou: ISIJ Int., 2015, vol. 55, pp. 837–44.

    Article  CAS  Google Scholar 

  15. S. Chang, X.K. Cao, Z.S. Zou, M. Isac, and R.I.L. Guthrie: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 2732–43.

    Article  Google Scholar 

  16. A. Asad, M. Haustein, K. Chattopadhyay, C.G. Aneziris, and R. Schwarze: JOM., 2018, vol. 70, pp. 2927–33.

    Article  CAS  Google Scholar 

  17. A. Cwudzinski: Ironmak. Steelmak., 2018, vol. 45, pp. 528–36.

    Article  CAS  Google Scholar 

  18. J. Jiang, J.S. Li, H.J. Wu, S.F. Yang, T. Li, and H.Y. Tang: Int. J. Miner. Metall. Mater., 2010, vol. 17, pp. 143–8.

    Article  CAS  Google Scholar 

  19. L.F. Zhang and S. Taniguchi: Int. Mater. Rev., 2000, vol. 45, pp. 59–82.

    Article  CAS  Google Scholar 

  20. S. Chang, Z.S. Zou, J.H. Liu, M. Isac, X.K.E. Cao, X.F. Su, and R.I.L. Guthrie: Powder Technol., 2021, vol. 387, pp. 125–35.

    Article  CAS  Google Scholar 

  21. S. Chatterjee and K. Chattopadhyay: ISIJ Int., 2015, vol. 55, pp. 1416–24.

    Article  CAS  Google Scholar 

  22. S. Chatterjee, D.H. Li, and K. Chattopadhyay: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 756–66.

    Article  Google Scholar 

  23. S. Chang, X.K. Cao, Z.S. Zou, M. Isac, and R.I.L. Guthrie: ISIJ Int., 2018, vol. 58, pp. 60–7.

    Article  CAS  Google Scholar 

  24. D. Gerlach, G. Biswas, F. Durst, and V. Kolobaric: Int. J. Heat Mass Transfer., 2005, vol. 48, pp. 425–38.

    Article  Google Scholar 

  25. S. Chang, W.X. Huang, Z.Z. Zou, B.K. Li, and R.I.L. Guthrie: Powder Technol., 2020, vol. 367, pp. 296–304.

    Article  CAS  Google Scholar 

  26. P.K. Singh and D. Mazumdar: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1091–103.

    Article  Google Scholar 

  27. Y. Li, C.G. Cheng, M.L. Yang, Z.X. Dong, and Z.L. Xue: Metals., 2018, vol. 8, p. 590.

    Article  Google Scholar 

  28. R. Liu and B.G. Thomas: Metall. Mater. Trans. B., 2015, vol. 46B, pp. 388–405.

    Article  Google Scholar 

  29. Q.Y. Zhang, L.T. Wang, and Z.R. Xi: ISIJ Int., 2006, vol. 8, pp. 1177–82.

    Article  Google Scholar 

  30. S. Chang, X.K. Cao, and Z.Z. Zou: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 953–7.

    Article  Google Scholar 

  31. Y. Sahai and T. Emi: ISIJ Int., 1996, vol. 36, pp. 1166–73.

    Article  CAS  Google Scholar 

  32. C. Laborde-Boulet, F. Larachi, N. Dromard, O. Delsart, and D. Schweich: Chem. Eng. Sci., 2009, vol. 64, pp. 4399–413.

    Article  Google Scholar 

  33. A. Tomiyama, H. Tamai, I. Zun, and S. Hosokawa: Chem. Eng. Sci., 2002, vol. 57, pp. 1849–58.

    Article  CAS  Google Scholar 

  34. P. J. O’Rourke: Ph.D Thesis, Princeton University, Princeton, New Jersey, 1981.

  35. M. Mezhericher, A. Levy, and I. Borde: Int. J. Multiphase Flow., 2012, vol. 43, pp. 22–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was supported by the National Natural Science Foundation of China (51904061).

Conflict of interest

The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Chang or Zongshu Zou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 25, 2021; accepted November 11, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, S., Zou, Z., Li, B. et al. Modeling Inclusion Removal when Using Micro-bubble Swarm in a Full-Scale Tundish with an Impact Pad. Metall Mater Trans B 53, 526–536 (2022). https://doi.org/10.1007/s11663-021-02388-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02388-z

Navigation