Skip to main content
Log in

The Role of Slag Carryover on the Non-metallic Inclusion Evolution and Magnetic Behavior in Electrical Steel

  • Topical Collection: 2021 Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the present investigation, a set of high-temperature experimentations were carried out to improve the understanding of the influence of slag carryover (SCO) on non-metallic inclusion evolution during the production of high silicon electrical steels for functional applications. It was observed that the liquid steel treated with synthetic slag and lime resulted in the formation of CaO-based complex oxide, sulfide, and nitride inclusions in the matrix. Whereas the top slag (synthetic slag and lime) contaminated with carryover slag transforms the complex oxide inclusions to Mn free oxy-sulfide inclusions in the high Si steel. Further, the high-silicon steel evaluated for magnetic property confirms the detrimental magnetic behavior of the steel treated using the top slag with the excess amount of SCO (10 kg/t). The increase in coercivity is due to a higher fraction of sub-micron inclusions in the steel matrix. The industry implications of the present findings are highlighted in the light of the evolution of Goss texture in high silicon steel during downstream processing. The evolution of detrimental inclusions in functional grade (electrical) steels due to the presence of SCO call for stringent process control during the upstream processing of liquid steel to maintain the desired magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. E. Zinngrebe, P. Seda, C.V. Hoek, and B.V. Arendonk: ISIJ Int., 2013, vol. 53, pp. 1913–22.

    Article  CAS  Google Scholar 

  2. Y. Kurosaki, M. Shiozakl, K. Higashine, and M. Sumimot: ISIJ Int., 1999, vol. 39(6), pp. 607–13.

    Article  CAS  Google Scholar 

  3. D.S. Petrovic, B. Arh, F. Tehovnik, and M. Pirna: ISIJ Int., 2011, vol. 51, pp. 2069–75.

    Article  Google Scholar 

  4. Y. Luo, A.N. Conejo, L. Zhang, L. Chen, and L. Cheng: Met. Mater. Trans. B., 2015, vol. 46, pp. 2348–60.

    Article  CAS  Google Scholar 

  5. Y. Shinkagi, M. Takashima, T. Nakanishi, and T. Mura: Grain-Oriented Electromagnetic Steel Sheet and Process for Producing the Same: Paten No: EP 1 818 420 A1, 2007, JFE Steel Corporation.

  6. Z. Liu, J. Wei, and K. Cal: ISIJ Int., 2002, vol. 42(9), pp. 958–63.

    Article  CAS  Google Scholar 

  7. S. He, G. Zhang, and Q. Wang: ISIJ Int., 2012, vol. 52, pp. 977–83.

    Article  CAS  Google Scholar 

  8. Z. Liu, K. Gu, and K. Cal: ISIJ Int., 2002, vol. 42(9), pp. 950–57.

    Article  CAS  Google Scholar 

  9. D. Kaliz: Arch. Metall. Mater., 2014, vol. 59(2), pp. 493–500.

    Article  Google Scholar 

  10. D. Podorska, and J. Wypartowicz: Behaviour of Non-Metallic Particles During Solidification of Silicon Steel, Metal, 2004, p. 1.9.

  11. C.K. Hou and C.C. Liao: ISIJ Int., 2008, vol. 48(4), pp. 531–39.

    Article  CAS  Google Scholar 

  12. J.D. Evans, and W.R. Long: Rare earth metal treated cold rolled, non-oriented silicon steel and method of making it: Patent No: US 3960616 A, 1976, Armco Steel Corporation.

  13. L. Zhang and B.G. Thomas: ISIJ Inter., 2003, vol. 43, pp. 271–91.

    Article  CAS  Google Scholar 

  14. K. Beskow, J. Jia, C.H.P. Lupis, and Du. Sichen: Ironmak. Steelmak., 2002, vol. 29, pp. 427–36.

    Article  CAS  Google Scholar 

  15. K. Steneholm: The effect of Ladle Vacuum treatment on Inclusion Characteristics for Tool steels, Doctoral Thesis, KTH Royal Institute of technology, Stockholm, 2005.

  16. P. Gardin, J.-F. Domgin, M. Simonnet, and J. Lehmann: Proceedings of an International Steelmaking Conference, La Revue de Metallurgie - CIT – Fevrier, 2008, pp. 84–97.

  17. A. Honda, Y. Obata and S. Okamura: History and Development of Non-Oriented Electrical Steel in Kawasaki Steel, Kawasaki Steel Technical Report, No. 39, 1998.

  18. L.J. Dijkstra and C. WERT: Phys. Rev., 1950, vol. 79, pp. 979–85.

  19. M. Asanuma and S. Miyahara: J. Faculty Sci., 1952, vol. 4, pp. 147–52.

    Google Scholar 

  20. H.-D. Dietze: Phys. kondens. Materie, 1964, vol. 2, pp. 117–32.

    CAS  Google Scholar 

  21. A.T. English: J. Appl. Phys., 1969, vol. 40, pp. 1573–74.

    Article  CAS  Google Scholar 

  22. T. Ishikawa, Y. Hamada, and K. Ohmori: IEEE Trans. Magn., 1989, vol. 25, pp. 3434–36.

    Article  CAS  Google Scholar 

  23. S. Turner, A. Moses, J. Hall, and K. Jenkins: J. Appl. Phys., 2010, vol. 107, p. 09A307-1-3.

  24. N. Chukwuchekwa: Theory of coercive Force for Randomly Distributed Lattice Defects and Precipitations, Ph.D. Thesis, Cardiff University, 2011.

  25. J. Liu, J. Wilson, C.L. Davis, and A. Peyton: J. Magn. Magn. Mater., 2019, vol. 481, pp. 55–67.

    Article  CAS  Google Scholar 

  26. A. Kamaraj, G.K. Mandal, and G.G. Roy: Met. Mater Trans. B, 2019, vol. 50B, pp. 438–58.

    Article  Google Scholar 

  27. A. Kamaraj, S. Hore, P. Sathyamoorthi, G.G. Roy, and G.K. Mandal: Trans. Ind. Inst. Met, 2017, vol. 70, pp. 2465–76.

    Article  CAS  Google Scholar 

  28. P.C. Pistorius: J. South Afr. Inst. Min. Metall., 2019, vol. 119, pp. 557–61.

    Article  CAS  Google Scholar 

  29. R.K. Roy, A.K. Panda, and A. Mitra: Electromagnetic characterization of steels through magnetic NDE device. International Conference on Signal Processing and Communication Engineering Systems, 2015, vol. 2015, pp. 511–14.

    Google Scholar 

  30. D. You, C. Bernhard, P. Mayer, J. Fasching, G. Kloesch, R. Rossler, and R. Ammer: Metall. Trans. B, 2021, vol. 52B, pp. 1854–65.

    Article  Google Scholar 

  31. M. Mohanasundaram, G.G. Roy, and S. Prakash: Trans. Ind. Inst. Met, 2019, vol. 72, pp. 1111–18.

    Article  CAS  Google Scholar 

  32. A. Krishnan, S. Dutta, K. Subramanian, A.K. Panda, P. Murugaiyan, and R.K. Roy: Trans. Indian Inst. Met., 2018, vol. 71, pp. 2395–2402.

    Article  Google Scholar 

  33. J.N. Mohapatra, T.S. Babu, S.K. Dabbiru, and G. Balachandran: J. Non Destruct. Eval., 2021, vol. 40, p. 73.

    Article  Google Scholar 

  34. J. Liu, G. Tian, B. Gao, K. Zeng, Q. Liu, and Y. Zheng: Sensors, 2021, vol. 21(8310), pp. 1–19.

    CAS  Google Scholar 

  35. J. Hoon Oh, S.H. Cho, and J.J. Jonas: ISIJ Int., 2001, vol. 41(5), pp. 484–91.

    Article  Google Scholar 

  36. W. Mao and H. Ren: Steel. Res. Int., 2014, vol. 87(12), pp. 1577–82.

    Article  Google Scholar 

  37. I. Samajdar, S. Cicale, B. Verlinden, P. Van Houtte, and G. Abbruzzesse: Scripta Mater., 1998, vol. 39(8), pp. 1083–88.

    Article  CAS  Google Scholar 

  38. Z. Zulhan, C. Schrade, and Y.A. Patriona: Desulfurization of Molten Steel in RH-Degasser by Powder Blowing to Produce Non-Grain Oriented (NGO) Silicon Steel, SEAISI Conference and Exhibition, Session 6A-6, Pattaya – Thailand, 4th June 2013.

  39. D.W. Taylor: Silicon steel coated with Magnesia containing chromic oxide, Patent No: US 3,544,396, Armco Steel Corporation, 1970.

  40. T.H. Shen: Metall. Trans. A, 1986, vol. 17A, pp. 1347–51.

    Article  CAS  Google Scholar 

  41. S. Szymura, J. Kieszniewski, and A. Zawada: Mater. Lett., 1983, vol. 2, pp. 97–100.

    Article  CAS  Google Scholar 

  42. Y. Hayakawa: Sci. Technol. Adv. Mater., 2017, vol. 18(1), pp. 480–97.

    Article  CAS  Google Scholar 

  43. K. Iwayama and T. Haratani: J. Magn. Magn. Mater., 1980, vol. 19, pp. 15–17.

    Article  CAS  Google Scholar 

  44. Y. Liu, X. Zhang, P. Wang, and D. Li: Metall. Trans. B, 2020, vol. 51B, pp. 22–26.

    Article  Google Scholar 

  45. G. Paltanea, V. Manescu, R. Stefanoiu, I.V. Nemoianu, and H. Gavrila: Materials (Basel), 2020, vol. 20, pp. 1–17.

    Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kamaraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamaraj, A., Murugaiyan, P., Mandal, G.K. et al. The Role of Slag Carryover on the Non-metallic Inclusion Evolution and Magnetic Behavior in Electrical Steel. Metall Mater Trans B 53, 1989–2003 (2022). https://doi.org/10.1007/s11663-022-02547-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02547-w

Navigation