Skip to main content
Log in

Effects of Reoxidation of Liquid Steel and Slag Composition on the Chemistry Evolution of Inclusions During Electroslag Remelting

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Electroslag remelting (ESR) is increasingly used to produce some varieties of special steels and alloys, mainly because of its ability to provide extreme cleanliness and an excellent solidification structure simultaneously. In the present study, the combined effects of varying SiO2 contents in slag and reoxidation of liquid steel on the chemistry evolution of inclusions and the alloying element content in steel during ESR were investigated. The inclusions in the steel before ESR refining were found to be oxysulfides of patch-type (Ca,Mn)S adhering to a CaO-Al2O3-SiO2-MgO inclusion. The oxide inclusions in both the liquid metal pool and remelted ingots are CaO-Al2O3-MgO and MgAl2O4 together with CaO-Al2O3-SiO2-MgO inclusions (slightly less than 30 pct of the total inclusions), which were confirmed to originate from the reduction of SiO2 from the original oxide inclusions by dissolved Al in liquid steel during ESR. CaO-Al2O3-MgO and MgAl2O4 are newly formed inclusions resulting from the reactions taking place inside liquid steel in the liquid metal pool caused by reoxidation of liquid steel during ESR. Increasing the SiO2 content in slag not only considerably reduced aluminum pickup in parallel with silicon loss during ESR, but also suppressed the decrease in SiO2 content in oxide inclusions. (Ca,Mn)S inclusions were fully removed before liquid metal droplets collected in the liquid metal pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. C.B. Shi, J. Li, J.W. Cho, F. Jiang, and I.H. Jung: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2110–2120.

    Article  Google Scholar 

  2. Z.X. Xue, Y.X. Zheng, F. Jiang, Y.Q. Du, B.S. Guo, P. Lin, and C.B. Shi: Special Steel, 2016, vol. 37, pp. 37-40.

    Google Scholar 

  3. K. Steneholm, M. Andersson, M. Nzotta, and P. Jönsson: Steel Res. Int., 2007, vol. 78, pp. 522-530.

    Article  Google Scholar 

  4. M. Song, M. Nzotta, and D. Sichen: Steel Res. Int., 2009, vol. 80, pp. 753-760.

    Google Scholar 

  5. M. Song, M. Nzotta, and D. Sichen: Ironmak. Steelmak., 2011, vol. 38, pp. 584-589.

    Article  Google Scholar 

  6. V.C. Rocha, J.A.M. Pereira, A. Yoshioka, W.V. Bielefeldt, and A.C.F. Vilela: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1423–1432.

    Article  Google Scholar 

  7. H. Yang, J. Ye, X. Wu, Y. Peng, Y. Fang, and X. Zhao: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1435–1444.

    Article  Google Scholar 

  8. M. Allibert, J.F. Wadier, and A. Mitchell: Ironmak. Steelmak., 1978, vol. 5, pp. 211–216.

    Google Scholar 

  9. J. Ju, Q. Zhang, Z. Jiao, Z. Zhang, and J. Zhao: J. Mater. Metall., 2013, vol. 12, pp.254–259.

    Google Scholar 

  10. K. Mehrabi, M.R. Rahimipour, and A. Shokuhfar: Int. J. ISSI, 2005, vol. 2, pp. 37-42.

    Google Scholar 

  11. D.C. Park, I.H. Jung, P.C.H. Rhee and H.G. Lee: ISIJ Int., 2004, vol. 44, pp. 1669–1678.

    Article  Google Scholar 

  12. W. Tiekink, R. Boom, A. Overbosch, R. Kooter, and S. Sridhar: Ironmak. Steelmak., 2010, vol. 37, pp. 488-495.

    Article  Google Scholar 

  13. C. Wang, N. Verma, Y. Kwon, W. Tiekink, N. Kikuchi, and S. Sridhar: ISIJ Int., 2011, vol. 51, pp. 375–381.

    Article  Google Scholar 

  14. Y. Oguti, Y. Tanbe, S. Miyama, and A. Ejima: Hagané, 1977, vol. 63, pp. 2152-2161.

    Google Scholar 

  15. J. Fu, C. Chen, E. Chen, and Y. Wang: Acta Metall. Sin., 1979, vol. 15, pp. 44-50.

    Google Scholar 

  16. M. Choudhary and J. Szekely: Metall. Trans. B, 1980, vol. 11B, pp. 439-453.

    Article  Google Scholar 

  17. Y. Dong, Z. Hou, Z. Jiang, H. Cao, Q. Feng, and Y. Cao: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 349–360.

    Article  Google Scholar 

  18. H. Ohta and H. Suito: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 943–953.

    Article  Google Scholar 

  19. C. Wagner: Thermodynamics of Alloys. Addison-Wesley Press, Cambridge, 1952, p. 51.

    Google Scholar 

  20. The Japan Society for the Promotion of Science: The 19th Committee on Steelmaking: Steelmaking Data Sourcebook, Gordon and Breach Science Publishers, New York, NY, 1988.

    Google Scholar 

  21. H. Ono-Nakazato, K. Taguchi, R. Maruo, and T. Usui: ISIJ Int., 2007, vol. 47, pp. 365-369.

    Article  Google Scholar 

  22. J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333–46.

    Article  Google Scholar 

  23. J.H. Park, S.B. Lee, D.S. Kim, and J.J. Pak: ISIJ Int., 2009, vol. 49, pp. 337–42.

    Article  Google Scholar 

  24. C.B. Shi, W.T. Yu, H. Wang, J. Li, and M. Jiang: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 146–161.

    Article  Google Scholar 

  25. C.B. Shi, X.C. Chen, Y.W. Luo, and H.J. Guo: TMS Annual Meeting, Minerals, Metals and Materials Society, San Antonio, TX, 2013, 31-38.

    Google Scholar 

  26. C.B. Shi: Ph.D. Thesis, University of Science and Technology Beijing, Beijing, 2012.

  27. C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu, and H. Ren: Steel Res. Int., 2012, vol. 83(5), 472-486.

    Article  Google Scholar 

  28. P.C. Pistorius and N. Verma: Microsc. Microanal., 2011, vol. 17, pp. 963–971.

    Article  Google Scholar 

  29. R. Piao, H.G. Lee, and Y.B. Kang: ISIJ Int., 2013, vol. 53, pp. 2132–2141.

    Article  Google Scholar 

  30. M. Wakoh, T. Sawai, and S. Mizoguchi: ISIJ Int. 1996, vol. 36, pp. 1014-1021.

    Article  Google Scholar 

  31. H.S. Kim, H.G. Lee, and K.S. Oh: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1519-1525.

    Article  Google Scholar 

  32. C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu, X. Sun: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 378–89.

    Article  Google Scholar 

  33. H. Todoroki and K. Mizuno: ISIJ Int., 2004, vol. 44, pp. 1350–1357.

    Article  Google Scholar 

  34. N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, H.G. Oltmann, and E.B. Pretorius: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 830–40.

    Article  Google Scholar 

  35. V.D. Eisenhüttenleute, Slag Atlas, 2nd ed., Woodhead Publishing Limited, Cambridge, 1995, p. 44.

    Google Scholar 

  36. H. Fujimura, S. Tsuge, Y. Komizo, and T. Nishizawa: Tetsu–to–Hagané, 2001, vol. 87, pp. 707–712.

    Google Scholar 

  37. J.S. Park, C.H. Lee, and J.H. Park: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1550–64.

    Article  Google Scholar 

  38. C.B. Shi, Q.T. Zhu, W.T. Yu, H.D. Song, and J. Li: J. Mater. Eng. Perform., 2016, vol. 25, pp. 4785-4795.

    Article  Google Scholar 

  39. H. Suito and R. Inoue: ISIJ Int., 1996, vol. 36, pp. 528–536.

    Article  Google Scholar 

  40. W. Tiekink, R. Boertje, R. Boom, R. Kooter, and B. Deo: ISSTech 2003 Conf. Proc., Iron and Steel Society, Warrendale, PA, 2003, pp. 157–64.

  41. T. Yoshioka, Y. Shimamura, A. Karasev, Y. Ohba, and P.G. Jönsson: Steel Res. Int., 2017, https://doi.org/10.1002/srin.201700147.

    Google Scholar 

  42. Y.J. Kang, F. Li, K. Morita, and D. Sichen: Steel Res. Int., 2006, vol. 77, pp. 785–792.

    Article  Google Scholar 

  43. G. Yang, X. Wang, F. Huang, D. Yang, P. Wei, and X. Hao: Metall. Mater. Trans. B, 2015, vol. 46, pp. 145–154.

    Article  Google Scholar 

  44. A.L. Kundu, K.M. Gupt, and P.K. Rao: Metall. Trans. B, 1989, vol. 20, pp. 581–594.

    Article  Google Scholar 

  45. J. Wikström, K. Nakajima, H. Shibata, A. Tilliander, and P. Jönsson: Mater. Sci. Eng. A, 2008, vol. 495, pp. 316–319.

    Article  Google Scholar 

  46. B.H. Reis, W.V. Bielefeldt, and A.C.F. Vilela: ISIJ Int., 2014, vol. 54, pp. 1584–1591.

    Article  Google Scholar 

  47. T. Yoshioka, K. Nakahata, T. Kawamura, and Y. Ohba: ISIJ Int., 2016, vol. 56, pp. 1973–1981.

    Article  Google Scholar 

  48. J. Zhou, D. Ma, C. Zhang, A. Kang, X. Li, and Z. Chen: Heat Treat. Met., 2012, vol. 37, pp. 53-58.

    Google Scholar 

  49. H.V. Atkinson and G. Shi: Prog. Mater. Sci., 2003, vol. 48, pp. 457–520.

    Article  Google Scholar 

  50. K. Fukaura, Y. Yokoyama, D. Yokoi, N. Tsujii, and K. Ono: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1289-1300.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support by the National Natural Science Foundation of China (Grant Nos. 51504019 and 51774225) and the National Key Research and Development Program of China (Grant No. 2016YFB0300604) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengbin Shi.

Additional information

Manuscript submitted October 20, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Wang, H. & Li, J. Effects of Reoxidation of Liquid Steel and Slag Composition on the Chemistry Evolution of Inclusions During Electroslag Remelting. Metall Mater Trans B 49, 1675–1689 (2018). https://doi.org/10.1007/s11663-018-1296-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1296-6

Keywords

Navigation