Skip to main content
Log in

Formation Mechanism of Stripe Pattern Defect in Cold-Rolled AISI 441 Stainless Steel Stabilized by Ti and Nb

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Obtaining aesthetic appearance is critical for ferritic stainless steel due to its vast application in ornamental trim. However, in production, stripe pattern defects usually appeared when the Ti and Nb contents are high, and this defect is characterized by bright and dark stripes paralleling the rolling direction. The formation mechanism of this defect has not been fully understood. This study applied roughness meter, FE-SEM, EBSD, and original position statistic distribution analysis (OPA) to characterize the stripe pattern defect. The formation mechanism was elucidated by simulation of solidification and compositional diffusion. It is novel to find that the brighter stripe presents a higher surface roughness, which is caused by the local precipitation of dense and nano-sized (Ti, Nb)C. The mechanism of dissimilar precipitation was investigated by OPA technology. As a result, stripe-like distributions of Ti and Nb were revealed with correspondence to the stripe pattern defect and led to the dissimilar precipitation of (Ti, Nb)C. The simulations clarified that the elemental distributions resulted from the segregation during solidification, which could be hardly homogenized in the thermomechanical processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T. Shiokawa, Y. Yazawa, and S. Okada: JFE Tech. Rep., 2008, vol. 12, pp. 45–50.

    Google Scholar 

  2. H. Yan, H. Bi, X. Li, and Z. Xu: Mater. Charact., 2009, vol. 60, pp. 65–68.

    Article  CAS  Google Scholar 

  3. F. Gao, Z. Liu, H. Liu, and G. Wang: Mater. Charact., 2013, vol. 75, pp. 93–100.

    Article  CAS  Google Scholar 

  4. T. Matsuhashi, A. Takahashi, and H. Kajimura: Nippon Steel Tech. Rep., 2010, vol. 99, pp. 20–25.

    Google Scholar 

  5. K. Omura, S. Kunioka, and M. Furukawa: Nippon Steel Tech. Rep., 2010, vol. 99, pp. 9–19.

    Google Scholar 

  6. Y. Hou, G. Cheng, and H. Cheng: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 709–21.

    Article  Google Scholar 

  7. K. Kimura and A. Takahashi: Nippon Steel Tech. Rep., 2010, vol. 99, pp. 51–55.

    Google Scholar 

  8. M. Abe: Nippon Steel Tech. Rep., 2021, pp. 2–12.

  9. H. Katayama, H. Kajioka, M. Inatomi, F. Tanaka, and H. Hosoda: Trans. Iron Steel Ins. Jpn., 1978, vol. 18, pp. 761–67.

    Article  CAS  Google Scholar 

  10. H. Yan, H. Bi, X. Li, and Z. Xu: Mater. Charact., 2008, vol. 59, pp. 1741–46.

    Article  CAS  Google Scholar 

  11. M. Labonne, A. Graux, S. Cazottes, F. Danoix, F. Cuvilly, F. Chassagne, M. Perez, and V. Massardier: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3655–64.

    Article  Google Scholar 

  12. J.K. Kim, B.-J. Lee, B.H. Lee, Y.H. Kim, and K.Y. Kim: Scripta Mater., 2009, vol. 61, pp. 1133–36.

    Article  CAS  Google Scholar 

  13. X.-F. Yan, M.F. Hassanein, F. Wang, and M.-N. He: Eng. Struct., 2021, vol. 242, 112611.

    Article  Google Scholar 

  14. T. Tsuchiyama, R. Hirota, K. Fukunaga, and S. Takaki: ISIJ Int., 2005, vol. 45, pp. 923–29.

    Article  CAS  Google Scholar 

  15. H. Liu, Z. Liu, and G. Wang: ISIJ Int., 2009, vol. 49, pp. 890–96.

    Article  CAS  Google Scholar 

  16. R.T. Loto and C.A. Loto: J. Mater. Res. Technol., 2018, vol. 7, pp. 231–39.

    Article  CAS  Google Scholar 

  17. I. Arrayago and E. Real: Structures, 2015, vol. 4, pp. 69–79.

    Article  Google Scholar 

  18. C. Wang, K. Hui, S. Jin, Y. Li, and J. Wang: Hot Work. Technol., 2020, vol. 49, pp. 154–59 (in Chinese).

    CAS  Google Scholar 

  19. H. Duan, L. Zhang, Y. Ren, Y. Zhang, S. Li, and L. Wang: in The 10th CSM Steel Congress and The 6th Baosteel Bienial Academic Conference, 2015, pp. 1442–47 (in Chinese).

  20. T.R. de Oliveira, M.A. da Cunha, and I.N. Gonçalves: Tecnologia em Metalurgia. Materiais e Mineração, 2013, vol. 5, pp. 150–55 (in Brazilian).

    Google Scholar 

  21. K. Suzuki, S. Asami, and K. Suzuki: Trans. Iron Steel Ins. Jpn., 1983, vol. 23, pp. 731–37.

    Article  Google Scholar 

  22. L. Zhang, Y. Li, Y. Yu, X. Gao, C. Sun, and D. Qi: Iron Steel, 2017, vol. 52, pp. 81–86 (in Chinese).

    CAS  Google Scholar 

  23. K. Kenmochi, I. Yarita, H. Abe, A. Fukuhara, T. Komatu, and H. Kaito: J. Mater. Process. Technol., 1997, vol. 69, pp. 106–11.

    Article  Google Scholar 

  24. K. Kenmochi, I. Yarita, H. Abe, A. Fukuhara, T. Komatu, H. Kaito, and A. Kishida: Tetsu-to-Hagane, 1992, vol. 78, pp. 1546–53 (in Japanese).

    Article  CAS  Google Scholar 

  25. G. Yao, L. Zhang, M. Dai, P. Yang, and Y. Wang: Chin. J. Automot. Eng., 2015, vol. 5, pp. 23–28 (in Chinese).

    Google Scholar 

  26. M. Sakurai, J.-I. Inagaki, and M. Yamashita: Tetsu-to-Hagane, 2003, vol. 89, pp. 18–22 (in Japanese).

    Article  CAS  Google Scholar 

  27. J. Yang, J. Gao, and Q. Yang: Iron Steel, 2018, vol. 53, pp. 45–49 (in Chinese).

    CAS  Google Scholar 

  28. J. Hu, M. Han, L. Yuan, and H. Wang: ISIJ Int., 2012, vol. 52, pp. 2055–58.

    Article  CAS  Google Scholar 

  29. D. Li and H. Wang: ISIJ Int., 2014, vol. 54, pp. 160–64.

    Article  CAS  Google Scholar 

  30. Z. Hou, G. Cheng, C. Wu, and C. Chen: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1517–29.

    Article  Google Scholar 

  31. L.B. Wolff, S.K. Nayar, and M. Oren: Int. J. Comput. Vis., 1998, vol. 30, pp. 55–71.

    Article  Google Scholar 

  32. P. Hruška, J. More-Chevalier, M. Novotný, J. Čížek, O. Melikhova, L. Fekete, M. Poupon, J. Bulíř, L. Volfová, M. Butterling, M.O. Liedke, A. Wagner, and P. Fitl: J. Alloys Compd., 2021, vol. 872, 159744.

    Article  Google Scholar 

  33. A.J. Deardo: Int. Mater. Rev., 2003, vol. 48, pp. 371–402.

    Article  CAS  Google Scholar 

  34. J. Fu, K. Cui, F. Li, J. Wang, and Y. Wu: Mater. Charact., 2020, vol. 159, 110027.

    Article  CAS  Google Scholar 

  35. S. Kodukula, M. Petäjäjärvi, J. Savolainen, T. Fabritius, and D. Porter: Steel Res. Int., 2021, vol. 92, p. 2000445.

    Article  CAS  Google Scholar 

  36. Y. Hou and G. Cheng: ISIJ Int., 2018, vol. 58, pp. 2298–2307.

    Article  CAS  Google Scholar 

  37. A. Graux, S. Cazottes, D. De Castro, D. San Martín, C. Capdevila, J. M. Cabrera, S. Molas, S. Schreiber, D. Mirković, F. Danoix, M. Bugnet, D. Fabrègue, and M. Perez: Materialia, 2019, vol. 5, p. 100233.

  38. Z. Zeng, K.M. Reddy, S. Song, J. Wang, L. Wang, and X. Wang: Mater. Charact., 2020, vol. 164, 110324.

    Article  CAS  Google Scholar 

  39. Y. Zhang, X. Li, Y. Liu, C. Liu, J. Dong, L. Yu, and H. Li: Mater. Charact., 2020, vol. 169, 110612.

    Article  CAS  Google Scholar 

  40. S. Ghosh, A.K. Singh, S. Mula, P. Chanda, V.V. Mahashabde, and T.K. Roy: Mater. Sci. Eng. A, 2017, vol. 684, pp. 22–36.

    Article  CAS  Google Scholar 

  41. H. Yan, H. Bi, X. Li, and Z. Xu: J Mater. Process. Technol., 2009, vol. 209, pp. 2627–31.

    Article  CAS  Google Scholar 

  42. O. Engler, C.N. Tomé, and M.-Y. Huh: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2299–2315.

    Article  CAS  Google Scholar 

  43. J. Yoo, M.C. Jo, J. Bian, S.S. Sohn, and S. Lee: Mater. Charact., 2021, vol. 176, 111133.

    Article  CAS  Google Scholar 

  44. J.A. Wang, Y. Chen, L. Luo, J. Chen, and Y. He: J. Mater. Eng. Perform., 2021, vol. 30, pp. 3342–51.

  45. P. Modak, S. Patra, R. Mitra, and D. Chakrabarti: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 2219–34.

    Article  Google Scholar 

  46. C. Zhang, Y. Xu, L. Zhang, and X. Zhou: Steel Res. Int., 2020, vol. 91, p. 2000109.

    Article  CAS  Google Scholar 

  47. S. Kodukula, H. Kokkomäki, E. Puukko, D. Porter, and J. Kömi: Steel Res. Int., 2021, vol. 92, p. 2000695.

    Article  CAS  Google Scholar 

  48. A. Sarkar, S. Sanyal, T.K. Bandyopadhyay, and S. Mandal: Mater. Sci. Eng. A, 2019, vol. 767, 138402.

    Article  CAS  Google Scholar 

  49. Z. Jia, X. Sun, J. Ji, Y. Wang, B. Wei, and L. Yu: Adv. Eng. Mater., 2021, vol. 23, p. 2001048.

    Article  CAS  Google Scholar 

  50. Y. Hou, S. Li, and G. Cheng: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 5445–57.

    Article  Google Scholar 

  51. Y. Hou and G. Cheng: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1351–64.

    Article  Google Scholar 

  52. Y. Hou and G. Cheng: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 4686–4700.

    Article  Google Scholar 

  53. K. Kimura, S. Fukumoto, G.-I. Shigesato, and A. Takahashi: ISIJ Int., 2013, vol. 53, pp. 2167–75.

    Article  CAS  Google Scholar 

  54. M.C. Jo, J. Yoo, S. Kim, S. Kim, J. Oh, J. Bian, S.S. Sohn, and S. Lee: Mater. Sci. Eng. A, 2020, vol. 789, 139656.

    Article  CAS  Google Scholar 

  55. C. Kang, J. Tang, H. Luo, K. Ye, Y. Ma, and D. Shi: Mater. Sci. Eng. A, 2020, vol. 786, 139367.

    Article  CAS  Google Scholar 

  56. M. Duportal, A. Oudriss, X. Feaugas, and C. Savall: Scr. Mater., 2020, vol. 186, pp. 282–86.

    Article  CAS  Google Scholar 

  57. Q. Guo, H.-W. Yen, H. Luo, and S.P. Ringer: Acta Mater., 2022, vol. 225, 117601.

    Article  CAS  Google Scholar 

  58. O. Dmitrieva, D. Ponge, G. Inden, J. Millán, P. Choi, J. Sietsma, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 364–74.

    Article  CAS  Google Scholar 

  59. J. Fu, W. Qiu, Q. Nie, and Y. Wu: J. Alloys Compd., 2017, vol. 699, pp. 938–46.

    Article  CAS  Google Scholar 

  60. Y. Hou and G. Cheng: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1322–33.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Jiuquan Iron and Steel Co., Ltd., for the financial support. The authors acknowledge the international collaborative support from the Project to Create Research and Educational Hubs for Innovative Manufacturing in Asia, Joining and Welding Research Institute, Osaka University.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuyang Hou or Guoguang Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Cheng, G., Kadoi, K. et al. Formation Mechanism of Stripe Pattern Defect in Cold-Rolled AISI 441 Stainless Steel Stabilized by Ti and Nb. Metall Mater Trans B 53, 2499–2511 (2022). https://doi.org/10.1007/s11663-022-02545-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02545-y

Navigation