Skip to main content
Log in

Solid Phase Sintering and Densification Behaviors of MnS Inclusions in 416 Stainless Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

MnS is an important strengthening phase for AISI 416 stainless steel with excellent processability, in order to explore the formation mechanism of long strip MnS inclusions. In this study, the solid phase diffusion, grain boundary diffusion, and sintering densification of MnS in 416 stainless steels at hot rolling temperature were investigated by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and theoretical analysis. The MnS inclusions are precipitated at 1717 K (1444 °C). The sintering behavior of MnS includes two stages: diffusion and sintering. Diffusion includes volume diffusion, surface diffusion, and grain boundary diffusion. Sintering occurs through the coupling of grain boundary diffusion and surface diffusion. When the temperature is lower than 1343 K (1070 °C), JS/JMn < 1, where S is the diffusion controlling element. On the contrary, Mn is the diffusion controlling element. The diffusion of MnS in the δ + γ-Fe matrix is caused by volume diffusion and surface diffusion together, and the diffusion rate of Mn in the matrix phase DC is 2.90 × 10–13 m2/s and the volume diffusion rate DV,Mn is 1.89 × 10–13 m2/s. At the beginning of holding at 1443 K (1170 °C), the grain boundary diffusion between Mn and S belongs to interstitial diffusion. The grain boundary width, 1.42 μm, does not reach the barrier limit hindering diffusion, and the grain boundary diffusion coefficient Dgb is 4.29 × 10–14 m2/s. At the later stage of holding and cooling at 1443 K (1170 °C), the sintering of MnS is promoted by the coupling of grain boundary diffusion and surface diffusion. The effective sintering stress FS increases with the equilibrium angle Ψ, and the sintering force becomes zero when the equilibrium configuration is reached. It is the existence of the interstitial phase that can make densification happen normally, and then make MnS particles reach equilibrium state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. FACTSAGE is a trademark of thermodynamic software (version 7.3), whose equilib module is used in this manuscript to carry out thermodynamic calculation in combination with three databases of pure material database (FactPS), oxide database (FToxid) and iron and steel metallurgy database (FSstel).

References

  1. K.D. Ramkumar, S. Dev, K.V.P. Prabhakar, R. Rajendran, K.G. Mugundan, and S. Narayanan: J. Mater. Process. Technol., 2019, vol. 266, pp. 52–62.

    Article  Google Scholar 

  2. C.W. Cao, G.F. Wang, J. Li, Q.R. Tian, Q.B. Zhu, K.N. Ai, and J.X. Fu: Metall. Res. Technol., 2021, vol. 118, p. 1.

    Google Scholar 

  3. C.E. Sims: Trans. Am. Inst. Min. Metall. Eng., 1959, vol. 215, pp. 367–93.

    CAS  Google Scholar 

  4. H. Fredriksson and M. Hillert: Scand. J. Metall., 1973, vol. 2, pp. 125–45.

    CAS  Google Scholar 

  5. K. Oikawa, H. Ohtani, K. Ishida, and T. Nishizawa: ISIJ Int., 1995, vol. 35, pp. 402–08.

    Article  Google Scholar 

  6. H. Zhang, G. Feng, X. Liu, B. Wang, and X. Liu: Metals, 2020, vol. 10, p. 11.

    Google Scholar 

  7. J. Zeng, C. Zhu, W. Wang, and X. Li: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 2522–31.

    Article  Google Scholar 

  8. S.B. Hosseini, C. Temmel, B. Karlsson, and N.G. Ingesten: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 982–89.

    Article  CAS  Google Scholar 

  9. Y.Z. Luo, J.M. Zhang, Z.M. Liu, C. Xiao, and S.Z. Wu: Acta Metall. Sin.-Engl., 2011, vol. 24, pp. 326–34.

    CAS  Google Scholar 

  10. H. Liu, D. Hu, Y. Wu, Z. Huang, J. An, and J. Fu: Metall. Res. Technol., 2018, vol. 115, p. 11.

    Google Scholar 

  11. J. Lu, G. Cheng, L. Chen, G. Xiong, and L. Wang: ISIJ Int., 2018, vol. 58, pp. 1307–15.

    Article  CAS  Google Scholar 

  12. Q. Tian, X. Xu, J. Li, N. Liu, X. Wu, P. Shen, and J. Fu: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2355–63.

    Article  Google Scholar 

  13. J. Wang, L. Zhang, Y. Zhang, Q. Ren, and H. Duan: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2831–36.

    Article  Google Scholar 

  14. F. Wakai and K.A. Brakke: Acta Mater., 2011, vol. 59, pp. 5379–87.

    Article  CAS  Google Scholar 

  15. P. Huang and J. Sun: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1301–09.

    Article  CAS  Google Scholar 

  16. F. Wakai, O. Guillon, G. Okuma, and N. Nishiyama: J. Am. Ceram. Soc., 2018, vol. 82, p. 1711.

    Google Scholar 

  17. X.J. Shao, X.H. Wang, M. Jiang, W.J. Wang, F. Huang, and Y.Q. Ji: Acta Metall. Sin., 2011, vol. 47, pp. 1210–15.

    CAS  Google Scholar 

  18. X.J. Shao: Study on the Precipitation Behavior and Micronization of MnS Inclusion in Steel, University of Science and Technology Beijing, Beijing, 2011.

    Google Scholar 

  19. K. Nohara and K. Hirano: ISIJ Int., 1971, vol. 11, p. 1267.

    Google Scholar 

  20. H. Oikawa: Tetsu-to-Hagane, 1982, vol. 68, p. 1489.

    Article  CAS  Google Scholar 

  21. V.A. Lashgari, G. Zimbitas, C. Kwakernaak, and W.G. Sloof: Oxid. Met., 2014, vol. 82, pp. 249–69.

    Article  CAS  Google Scholar 

  22. P. Yan, M. Guo, and B. Blanpain: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 903–13.

    Article  Google Scholar 

  23. V.G. Praig, M. Stöger-Pollach, A. Schintlmeister, M. Auinger, and H. Danninger: J. Alloys Compd., 2021, vol. 876, p. 160069.

    Article  CAS  Google Scholar 

  24. T. Flores, S. Junghans, and M. Wuttig: Surf. Sci., 1997, vol. 371, pp. 1–13.

    Article  CAS  Google Scholar 

  25. P. Jung: Phys. Rev. B, 1981, vol. 23, pp. 664–70.

    Article  CAS  Google Scholar 

  26. E.A. Olevsky: Mater. Sci. Eng. R, 1998, vol. 23, pp. 41–100.

    Article  Google Scholar 

  27. F. Wakai, K. Katsura, S. Kanchika, Y. Shinoda, T. Akatsu, and K. Shinagawa: Acta Mater., 2016, vol. 109, pp. 292–99.

    Article  CAS  Google Scholar 

  28. K. Oikawa, K. Ishida, and T. Nishizawa: ISIJ Int., 1997, vol. 37, pp. 332–38.

    Article  CAS  Google Scholar 

  29. F.B. Swinkels and M.F. Ashby: Acta Metall., 1981, vol. 29, pp. 259–81.

    Article  CAS  Google Scholar 

  30. C. Herring: J. Appl. Phys., 1950, vol. 21, pp. 437–45.

    Article  Google Scholar 

  31. F.F. Lange: J. Am. Ceram. Soc., 1984, vol. 67, pp. 83–89.

    Article  CAS  Google Scholar 

  32. B.J. Kellett and F.F. Lange: J. Am. Ceram. Soc., 1989, vol. 72, pp. 725–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully express their appreciation to the Natural Science Foundation of China (Grant Nos. 51874195 and 52074179) for supporting this work.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxun Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 676 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Tian, Q., Li, J. et al. Solid Phase Sintering and Densification Behaviors of MnS Inclusions in 416 Stainless Steel. Metall Mater Trans B 53, 2427–2437 (2022). https://doi.org/10.1007/s11663-022-02540-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02540-3

Navigation