Skip to main content
Log in

A numerical analysis of intergranular penny-shaped microcrack shrinkage controlled by coupled surface and interface diffusion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An axisymmetric finite-element method is developed and applied to simulate healing evolution of intergranular penny-shaped microcracks. In the finite-element method, grain-boundary diffusion and surface diffusion are coupled by the boundary conditions at the triple circle of the penny-shaped microcrack surface and the grain-boundary plane. Matter is transported to the triple circle by grain-boundary diffusion and is taken away from the microcrack tips and deposited onto the microcrack surfaces by surface diffusion, resulting in shrinkage of the intergranular microcracks. The numerical simulations show that the evolution processes of intergranular microcracks are controlled by equilibrium dihedral angle (defined by surface and grain-boundary tensions), microcrack spacing, ratio of grain-boundary diffusion to surface diffusion, and the applied pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.K. Gupta: J. Am. Ceram. Soc., 1975, vol. 58 (3–4), pp. 143–48.

    Article  CAS  Google Scholar 

  2. J.D. Powers and A.M. Glaeser: J. Am. Ceram. Soc., 1993, vol. 75 (9), pp. 2225–34.

    Article  Google Scholar 

  3. A.G. Evans and E.A. Charles: Acta Metall., 1977, vol. 25, pp. 919–27.

    Article  CAS  Google Scholar 

  4. J. Rodel and A.M. Glaeser: J. Am. Ceram. Soc., 1990, vol. 73 (3), pp. 592–601.

    Article  CAS  Google Scholar 

  5. J.D. Powers and A.M. Glaeser: J. Am. Ceram. Soc., 1992, vol. 75 (9), pp. 2547–58.

    Article  CAS  Google Scholar 

  6. F. Yao, K. Ando, and M.C. Chu: J. Mater. Sci. Lett., 2000, vol. 19, pp. 1081–85.

    Article  CAS  Google Scholar 

  7. T.K. Gupta: J. Am. Ceram. Soc., 1978, vol. 61 (5–6), pp. 191–95.

    Article  CAS  Google Scholar 

  8. W.C. Carter and A.M. Glaeser: J. Am. Ceram. Soc., 1984, vol. 67 (6), pp. C-124–C-127.

    Article  Google Scholar 

  9. M.D. Drory and A.M. Glaeser: J. Am. Ceram. Soc., 1985, vol. 68 (1), pp. C-14–C-15.

    Article  CAS  Google Scholar 

  10. Y. Takahashi, F. Ueno, and K. Nishiguchi: Acta Mater., 1988, vol. 36 (11), pp. 3007–18.

    Article  CAS  Google Scholar 

  11. J. Pan and A.C.F. Cocks: Acta Mater., 1995, vol. 43 (4), pp. 1395–406.

    Article  CAS  Google Scholar 

  12. M.F. Ashby: Acta Metall., 1974, vol. 22, pp. 275–89.

    Article  CAS  Google Scholar 

  13. B. Derby and E.R. Wallach: Met. Sci., 1982, vol. 16, pp. 49–56.

    Article  CAS  Google Scholar 

  14. A.S. Helle, K.E. Easterling, and M.F. Ashby: Acta Metall., 1985, vol. 33 (12), pp. 2163–74.

    Article  CAS  Google Scholar 

  15. C. Herring: in The Physics of Powder Metallurgy, W.E. Kingston, ed., New York, NY, 1951, p. 143.

  16. Y. Takahashi, K. Takahashi, and K. Nishiguchi: Acta Mater., 1991, vol. 39 (12), pp. 3199–216.

    Article  CAS  Google Scholar 

  17. Y. Takahashi and K. Inoue: Mater. Sci. Technol. Ser., 1992, vol. 8 (11), pp. 953–64.

    Google Scholar 

  18. L. Martinez and W.D. Nix: Metall. Trans. A, 1981, vol. 13A, pp. 427–37.

    Google Scholar 

  19. G.M. Pharr and W.D. Nix: Acta Metall., 1979, vol. 27, pp. 1615–31.

    Article  CAS  Google Scholar 

  20. L. Martinez and W.D. Nix: Metall. Trans. A, 1981, vol. 12k, pp. 23–30.

    Google Scholar 

  21. B. Sun and Z. Suo: Acta Mater, 1997, vol. 45, pp. 4953–62.

    Article  CAS  Google Scholar 

  22. P.Z. Huang, Z.H. Li, and J. Sun: Modeling Simul. Mater. Sci. Eng., 2000, vol. 8, pp. 843–56.

    Article  Google Scholar 

  23. P.Z. Huang, Z.H. Li, and J. Sun: Metall. Mater. Trans. A, 2002, vol. 33, pp. 1117–24.

    Article  Google Scholar 

  24. B.N. Kim and T. Kishi: Acta Mater., 1999, vol. 47 (7), pp. 2293–301.

    Article  CAS  Google Scholar 

  25. W.Q. Wang and Z Suo: J. Mech. Phys. Solids, 1997, vol. 45 (5), pp. 709–29.

    Article  CAS  Google Scholar 

  26. J.R. Rice and T.-J. Chuang: J. Am. Ceram. Soc., 1981, vol. 64 (1), pp. 46–53.

    Article  CAS  Google Scholar 

  27. Z. Suo and W. Wang: J. Appl. Phys., 1994, vol. 76 (6), pp. 3410–21.

    Article  CAS  Google Scholar 

  28. Y.H. Yu and Z. Suo: J. Mech. Phys. Solids, 1999, vol. 47 (5), pp. 1131–55.

    Article  Google Scholar 

  29. Z. Suo: Adv. Appl. Mech., 1997, vol. 33, pp. 193–294.

    Article  Google Scholar 

  30. W.D. Kingery and M. Berg: J. Appl. Phys., 1955, vol. 26 (10), pp. 1205–12.

    Article  CAS  Google Scholar 

  31. W.W. Mullins: J. Appl. Phys., 1956, vol. 27 (8), pp. 77–83.

    Article  Google Scholar 

  32. W. Yang and Z. Suo: Acta Mech. Sinica, 1996, vol. 12 (2), pp. 144–57.

    Article  Google Scholar 

  33. P.Z. Huang, Z.H. Li, J. Sun, and H.J. Gao: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 277–85.

    CAS  Google Scholar 

  34. P.Z. Huang, J. Sun, and Z.H. Li: Inter. J. Solid Struct., 2003, vol. 40 (8), pp. 1959–72.

    Article  Google Scholar 

  35. J. Svoboda and H. Riedel: Acta Mater., 1992, vol. 40 (11), pp. 2829–40.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, P., Sun, J. A numerical analysis of intergranular penny-shaped microcrack shrinkage controlled by coupled surface and interface diffusion. Metall Mater Trans A 35, 1301–1309 (2004). https://doi.org/10.1007/s11661-004-0304-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0304-4

Keywords

Navigation