Skip to main content
Log in

Direct Alloying of Molten Steel with Vanadium Slag: Self-reduction of Vanadium Slag Briquette with Graphite Powder and Hybrid Reductant of Graphite Powder-Aluminum Dross

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this work, a direct alloying technology of molten steel by the self-reduction briquette composed of vanadium slag and graphite powder was proposed. The reduction behavior of vanadium slag briquette was thermodynamically and experimentally investigated, and relevant reaction mechanisms were discussed. The results show that the increases in C/O molar ratio and reduction temperature would promote the further reduction of vanadium slag. The reduction degrees of FeO, Cr2O3, MnO, and V2O5 increased from 85.24, 47.98, 9.05, and 75.70 pct to 92.10, 64.53, 42.52, and 79.62 pct, respectively, with increasing temperature from 1500 °C to 1600 °C. As the C/O molar ratio increased from 0.8 to 1.2, the reduction degrees of FeO, Cr2O3, MnO, and V2O5 sharply increased from 86.56, 18.38, 43.38, and 50.91 pct to 92.10, 64.53, 50.02, and 79.62 pct, respectively, and then slowly increased or nearly remained constant. The briquette basicity exhibits an obvious positive influence on the reduction of vanadium slag to a certain extent, and the reduction degrees of FeO, Cr2O3, MnO, and V2O5 increase from 92.10, 64.53, 42.50, and 76.14 pct to 97.21, 81.04, 75.64, and 88.50 pct with increasing the basicity from 0 to 0.5, leading to a significant decrease in the reduction degree of vanadium slag when the basicity increased from 0.5 to 1.5. For the hybrid reductant of aluminum dross and graphite powder, when the proportion of aluminum dross exceeds 52 pct, a considerable amount of solid compound (magnesia-alumina spinel) would be precipitated from liquid slag, which strongly affects the thermophysical properties of molten slag. Under the optimal conditions, C/O molar ratio of 1.2, reduction temperature of 1600 °C, and briquette basicity of 0.5, the reduction degrees of FeO, Cr2O3, V2O5, and MnO could reach the maximum of 97.21, 81.04, 88.50, and 75.64 pct, respectively, and a crude Fe–V alloy mixture containing 23.40 pct V could be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. O. Nokhrina, I. Rozhikhina, V. Dmitrienko, M. Golodova, and Y.A. Osipova: Steel Transl., 2015, vol. 45, pp. 543–45.

    Article  Google Scholar 

  2. H. Antrekowitsch, S. Luidold, and H. Gaugl: BHM, 2008, vol. 153, pp. 109–15.

    CAS  Google Scholar 

  3. O. Nokhrina, I. Rozhikhina, V. Dmitrienko, M. Golodova, and Y.A. Efimenko: Steel Transl., 2014, vol. 44, pp. 99–102.

    Article  Google Scholar 

  4. J. Zhang, W. Zhang, L. Zhang, and S. Gu: Int. J. Min. Process., 2015, vol. 138, pp. 20–29.

    Article  CAS  Google Scholar 

  5. L. Chen, J. Diao, G. Wang, and B. Xie: JOM, 2018, vol. 70, pp. 963–68.

    Article  CAS  Google Scholar 

  6. A. Teng and X. Xue: J. Haz. Mater., 2019, vol. 379, p. 120805.

    Article  CAS  Google Scholar 

  7. Z.F. Yuan, W.L. Huang, S.Y. Zhu, D.H. Liao, and H.F. Hu: Steel Res. Int., 2002, vol. 73, pp. 428–32.

    Article  CAS  Google Scholar 

  8. X. Hu: Steel Res. Int., 2016, vol. 87, pp. 1–7.

    Article  Google Scholar 

  9. J. Madias: in ABM Week—50th ABM Steelmaking Sem., Sao Paulo, Brazil, Oct. 2018, pp. 1–3.

  10. S. Song, Z. Xue, B. Zhang, W. Wang, R. Liu, and G. Wang: Ironmak. Steelmak., 2014, vol. 41, pp. 7–11.

    Article  CAS  Google Scholar 

  11. X. Hu, L. Sundqvist, Q. Ökvist, B. Yang, and B. Björkman: Ironmak. Steelmak., 2015, vol. 42, pp. 409–17.

    Article  CAS  Google Scholar 

  12. A. Ahmed, M.K. El-Fawakhry, M. Eissa, and S. Shahein: Ironmak. Steelmak., 2015, vol. 42, pp. 648–55.

    Article  CAS  Google Scholar 

  13. J. Xin, N. Wang, M. Chen, and C. Chen: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 815–29.

    Article  Google Scholar 

  14. S.Q. Song, Z.L. Xue, Y.U. Yue, R.N. Liu, and G.L. Wang: ISIJ Int., 2013, vol. 53, pp. 1138–42.

    Article  CAS  Google Scholar 

  15. S.Q. Song, Z.L. Xue, W.X. Wang, P. Li, R.N. Liu, and G.L. Wang: Met. Int., 2012, vol. 17, pp. 83–85.

    CAS  Google Scholar 

  16. B. Zhang, Z.L. Xue, T.T. Zhu, and J. Dong: J. Iron Steel Res. Int., 2015, vol. 22, pp. 402–07.

    Article  Google Scholar 

  17. Z. Hung and L. Zheng: J. Iron Steel Res. Int., 2013, vol. 21, pp. 51–56.

    Google Scholar 

  18. M. Divakar, M. Görnerup, and A. Kumar Lahiri: Steel Res. Int., 2001, vol. 72, pp. 40–43.

    Article  CAS  Google Scholar 

  19. B. Zhang and C. Wei: Iron Steel Vanad. Titan., 1991, vol. 12, pp. 25–29. (in Chinese).

    CAS  Google Scholar 

  20. A. Roine: Chemical Reaction and Equilibrium Software with Extensive Thermo-Chemical Database, Outokumpu HSC 6.0, Outotec Oy Research Center, Pori, Finland, 2010.

  21. Z. Guo, D. Zhu, J. Pan, and F. Zhang: J. Clean. Prod., 2018, vol. 187, pp. 910–22.

    Article  CAS  Google Scholar 

  22. K. Morita, M. Mori, M. Guo, T. Ikagawa, and N. Sano: Steel Res. Int., 1999, vol. 70, pp. 319–24.

    Article  CAS  Google Scholar 

  23. R. Inoue and H. Suito: J. Iron Steel Inst. Jpn., 1982, vol. 68, pp. 1532–40.

    Article  CAS  Google Scholar 

  24. J. Xin, N. Wang, M. Chen, and C. Chen: ISIJ Int., 2020, vol. 60, pp. 823–31.

    Article  CAS  Google Scholar 

  25. M. Mahinroosta and A. Allahverdi: J. Environ. Manag., 2018, vol. 223, pp. 452–68.

    Article  CAS  Google Scholar 

  26. J.H. Heo, T.S. Kim, V. Sahajwalla, and J.H. Park: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1201–10.

    Article  Google Scholar 

  27. S. Hamar-Thibault, L. Adnane, and R. Kesri: J. Alloys Compd., 2001, vol. 317, pp. 311–14.

    Article  Google Scholar 

  28. W. Huang: Metall. Trans. A, 1991, vol. 22A, pp. 1911–20.

    Article  CAS  Google Scholar 

  29. J.H. Heo, Y. Chung, and J.H. Park: J. Clean. Prod., 2016, vol. 137, pp. 777–87.

    Article  CAS  Google Scholar 

  30. J.H. Heo and J.H. Park: Calphad, 2017, vol. 58, pp. 219–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant Nos. 51774073, 51974080, and 52074077). The Fundamental Research Funds for the Central Universities was supported by the Chinese Education Ministry (Grant No. N2125018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nan Wang or Min Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, J., Wang, N., Chen, M. et al. Direct Alloying of Molten Steel with Vanadium Slag: Self-reduction of Vanadium Slag Briquette with Graphite Powder and Hybrid Reductant of Graphite Powder-Aluminum Dross. Metall Mater Trans B 53, 2334–2348 (2022). https://doi.org/10.1007/s11663-022-02532-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02532-3

Navigation