Skip to main content
Log in

Segregation Behavior of Impurity Iron in Primary Silicon During Directional Solidification of a Hypereutectic Silicon–Titanium Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Iron (Fe) in metallurgical-grade silicon (MG-Si) is the main metal impurity and is difficult to remove. Strengthening the segregation of impurity Fe at the solid–liquid interface is the key to purifying MG-Si; therefore, a refinement method for the directional solidification of hypereutectic silicon–titanium (Si–Ti) alloy was proposed, and the segregation ability was quantified by calculating the equilibrium segregation coefficient of impurity Fe. By analyzing the microstructure, segregation thermodynamics, and equilibrium segregation coefficient of impurity Fe in a Si-rich layer, it was confirmed that the segregation ability of impurity Fe during Si–Ti alloy refining was stronger than that of MG-Si. The results showed that impurity phases containing Fe precipitates in the Si-rich layer included τ5 and τ1 phases. After introducing Ti into the Si melt, the equilibrium segregation coefficient of Fe impurities was significantly reduced, and the equilibrium segregation coefficient of Si–10 wt pct Ti–0.396 wt pct Fe was k0Fe = 8.68 × 10−7, which was much lower than that of MG-Si (6.4 × 10−6). During the directional solidification and refining of Si–10 wt pct Ti–0.396 wt pct Fe, the removal rate of impurity Fe increased from 90.5 to 96.75 pct of MG-Si to 99.86 pct. This work helps provide understanding of the segregation behavior of impurities at the solid–liquid interface during the directional solidification of Si–Ti alloys and lays a theoretical foundation for the deep removal of impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Ma, Z. Yu, W. Ma, S. Qing, and J.J. Wu: Silicon Neth., 2019, vol. 11, pp. 1383–91. https://doi.org/10.1007/s12633-018-9937-6.

    Article  CAS  Google Scholar 

  2. S. Yang, X. Wan, K. Wei, W. Ma, and Z. Wang: J. Clean. Prod., 2021, https://doi.org/10.1016/j.jclepro.2020.125525.

    Article  Google Scholar 

  3. S. Han, N. Tan, K. Wei, and W. Ma: Sep. Purif. Technol., 2022, https://doi.org/10.1016/j.seppur.2021.119815.

    Article  Google Scholar 

  4. F. Chigondo: Silicon Neth., 2018, vol. 10, pp. 789–98. https://doi.org/10.1007/s12633-016-9532-7.

    Article  CAS  Google Scholar 

  5. A.F.B. Braga, S.P. Moreira, P.R. Zampieri, J.M.G. Bacchin, and P.R. Mei: Sol. Energy Mater. Sol. Cells, 2008, vol. 92, pp. 418–24. https://doi.org/10.1016/j.solmat.2007.10.003.

    Article  CAS  Google Scholar 

  6. S. Yang, X. Wan, K. Wei, W. Ma, and Z. Wang: Waste Manag., 2021, vol. 120, pp. 820–27. https://doi.org/10.1016/j.wasman.2020.11.005.

    Article  CAS  Google Scholar 

  7. S. Yang, X. Wan, K. Wei, W. Ma, and Z. Wang: Miner. Eng., 2021, https://doi.org/10.1016/j.mineng.2021.106966.

    Article  Google Scholar 

  8. H. Chen, K. Morita, X. Ma, Z. Chen, and Y. Wang: Sol. Energy Mater. Sol. Cells, 2019, https://doi.org/10.1016/j.solmat.2019.110169.

    Article  Google Scholar 

  9. S. Pizzini: Sol. Energy Mater. Sol. Cells, 2010, vol. 94, pp. 1528–33. https://doi.org/10.1016/j.solmat.2010.01.016.

    Article  CAS  Google Scholar 

  10. J.M. Bablin, A.C. Crawford, D.C. DeMoulpied, and L.N. Lewis: Ind. Eng. Chem. Res., 2003, vol. 42, pp. 3555–65. https://doi.org/10.1021/ie020334s.

    Article  CAS  Google Scholar 

  11. B. Gillot, G. Weber, H. Souha, and M. Zenkouar: J Alloy Compd., 1998, vol. 270, pp. 275–80. https://doi.org/10.1016/S0925-8388(98)00527-1.

    Article  CAS  Google Scholar 

  12. Y. Li and L. Zhang: Sep. Purif. Rev., 2021, vol. 50, pp. 115–38. https://doi.org/10.1080/15422119.2019.1623253.

    Article  CAS  Google Scholar 

  13. Y. Li, W. Chen, J. Lu, X. Lei, and L. Zhang: J. Electron. Mater., 2021, vol. 50, pp. 1386–96. https://doi.org/10.1007/s11664-020-08651-4.

    Article  CAS  Google Scholar 

  14. A. Hoseinpur, S. Andersson, K. Tang, and J. Safarian: Langmuir, 2021, https://doi.org/10.1021/acs.langmuir.1c00876.

    Article  Google Scholar 

  15. F. Xi, S. Li, W. Ma, Z. Chen, K. Wei, and J.J. Wu: Hydrometallurgy, 2021, vol. 201, p. 10553. https://doi.org/10.1016/j.hydromet.2021.105553.

    Article  CAS  Google Scholar 

  16. G. Qian, L. Sun, H. Chen, Z. Wang, K. Wei, and W. Ma: J. Alloy Compd., 2020, https://doi.org/10.1016/j.jallcom.2019.153300.

    Article  Google Scholar 

  17. K. Zhu, J. Hu, W. Ma, K. Wei, T. Lv, and Y. Dai: J. Cryst. Growth, 2019, vol. 522, pp. 78–85. https://doi.org/10.1016/j.jcrysgro.2019.05.012.

    Article  CAS  Google Scholar 

  18. J. Hu, K. Zhu, K. Wei, W. Ma, and T. Lv: J. Alloy Compd., 2020, https://doi.org/10.1016/j.jallcom.2019.152621.

    Article  Google Scholar 

  19. L. Zhou, K. Zhu, T. Yan, J. Hu, K. Wei, and W. Ma: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1–12. https://doi.org/10.1007/s11663-021-02395-0.

    Article  CAS  Google Scholar 

  20. P. Li, S. Ren, D. Jiang, J. Li, L. Zhang, and Y. Tan: J. Cryst. Growth, 2016, vol. 437, pp. 14–19. https://doi.org/10.1016/j.jcrysgro.2015.12.007.

    Article  CAS  Google Scholar 

  21. Y. Li, B. Ban, J. Li, T. Zhang, X. Bai, J. Chen, and S. Dai: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 542–44. https://doi.org/10.1007/s11663-015-0291-4.

    Article  CAS  Google Scholar 

  22. J. Li, B. Ban, Y. Li, X. Bai, T. Zhang, and J. Chen: Silicon Neth., 2017, vol. 9, pp. 77–83. https://doi.org/10.1007/s12633-014-9269-0.

    Article  CAS  Google Scholar 

  23. F. Weitzer, J.C. Schuster, M. Naka, F. Stein, and M. Palm: Intermetallics, 2008, vol. 16, pp. 273–82. https://doi.org/10.1016/j.intermet.2007.10.006.

    Article  CAS  Google Scholar 

  24. Q.C. Zou, J.C. Jie, J.L. Sun, T.M. Wang, Z.Q. Cao, and T.J. Li: Sep. Purif. Technol., 2015, vol. 142, pp. 101–07. https://doi.org/10.1016/j.seppur.2015.01.005.

    Article  CAS  Google Scholar 

  25. J. Yang, J. Zhang, Y. Dai, J. Ma, F. Li, F. Bian, J. Mi, and B. Sun: Comput. Mater. Sci., 2015, vol. 109, pp. 1–48. https://doi.org/10.1016/j.commatsci.2015.05.033.

    Article  CAS  Google Scholar 

  26. M. Zhu, S.Y. Yue, K. Tang, and J. Safarian: ACS Sustain. Chem. Eng., 2020, vol. 8, pp. 15953–15966. https://doi.org/10.1021/acssuschemeng.0c05564.

    Article  CAS  Google Scholar 

  27. W. Yu, Y. Xue, J. Mei, X. Zhou, M. Xiong, and S. Zhang: J. Alloy Compd., 2019, vol. 805, pp. 198–204. https://doi.org/10.1016/j.jallcom.2019.07.089.

    Article  CAS  Google Scholar 

  28. T. Yoshikawa, K. Morita, S. Kawanishi, and T. Tanaka: J. Alloy Compd., 2010, vol. 490, pp. 31–41. https://doi.org/10.1016/j.jallcom.2009.09.190.

    Article  CAS  Google Scholar 

  29. X. Deng, S. Li, J. Wen, K. Wei, M. Zhang, X. Yang, and W. Ma: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 625–32. https://doi.org/10.1007/s11663-020-02028-y.

    Article  CAS  Google Scholar 

  30. D.P. Tao: Thermochim. Acta, 2000, vol. 363, pp. 105–13. https://doi.org/10.1016/S0040-6031(00)00603-1.

    Article  CAS  Google Scholar 

  31. F. Yang, J. Wu, and W. Ma: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 2381–90. https://doi.org/10.1007/s11663-020-01895-9.

    Article  CAS  Google Scholar 

  32. D.P. Tao: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2232–46. https://doi.org/10.1007/s11663-014-0154-4.

    Article  CAS  Google Scholar 

  33. Y. Li, Q.F. Gu, Q. Luo, Y. Peng, S.L. Chen, K.C. Chou, X.L. Wang, and Q. Li: Mater. Des., 2016, vol. 102, pp. 78–90. https://doi.org/10.1016/j.matdes.2016.03.144.

    Article  CAS  Google Scholar 

  34. Y. Zhang, Y. Lei, W. Ma, H. Wang, Y. Hu, K. Wei, and S. Li: J. Alloy Compd., 2020, https://doi.org/10.1016/j.jallcom.2020.153989.

    Article  Google Scholar 

  35. F. Huang, R. Chen, J. Guo, H. Ding, and Y. Su: Sep. Purif. Technol., 2017, vol. 188, pp. 67–72. https://doi.org/10.1016/j.seppur.2017.06.073.

    Article  CAS  Google Scholar 

  36. D.H. Liu, X.D. Ma, Y.Y. Du, T.J. Li, and G.L. Zhang: Mater. Res. Innov., 2010, vol. 14, pp. 361–64. https://doi.org/10.1179/143307510X12820854748674.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant Nos. U1902219 and U1702251), Special Funds of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization (Grant No. CNMRCUTS1604), Reserve Talents of Young and Middle-Aged Academic and Technical Leaders in Yunnan Province (Grant No. 2018HB009), Yunnan Outstanding Youth Science Foundation (Grant No. 202101AV070007), Sichuan Science and Technology Program (Grant No. 2021YJ0548), and Research Project of Panzhihua University (Grant No. 2020ZD002).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuixian Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Zhu, K., Deng, X. et al. Segregation Behavior of Impurity Iron in Primary Silicon During Directional Solidification of a Hypereutectic Silicon–Titanium Alloy. Metall Mater Trans B 53, 2262–2271 (2022). https://doi.org/10.1007/s11663-022-02527-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02527-0

Navigation