Skip to main content
Log in

Compound Use of Chemical Waste as Flux in Iron Ore Sintering

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

With the accelerated development of the polyvinyl chloride materials industry, a large amount of carbide slag (CS) chemical waste, which has negative impacts on the environment, has been produced during the process, the further use of which has become a major issue that limits industrial development. This article investigated the compound use of CS as a flux material in the iron ore sintering process. The feasibility of replacing conventional flux quicklime with CS during the sintering process was discussed by evaluating the chemical and mineral characteristics of CS and by analyzing the effect of CS content (0 to 7.7 wt pct) on the sinter product. The tumbler strength of sinter increases from 71.33 to 74.67 pct as the CS content increases from 0 to 4 wt pct; because of the formation of fine calcium ferrite and dense interwoven structure, the yield and average particle sizes of sinter show the same trend. The addition of 6 wt pct CS would increase the amount of hematite phase and the softening temperature of sinter. Both the quality of sinter and compound use of CS can be ensured by adding about 4 wt pct CS, while adding 7.7 wt pct CS would cause the performance deterioration of sinter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Peng, R. Xie, and M. Lai: Resour. Conserv. Recycl., 2018, vol. 129, pp. 392–401.

    Article  Google Scholar 

  2. National Bureau of Statistics of China, China Statistics Press.

  3. R. Agrawal and P. Pandey: J. Sci. Ind. Res., 2005, vol. 64, pp. 702–06.

    CAS  Google Scholar 

  4. D.J.C. Stewart and A.R. Barron: Resour. Conserv. Recycl., 2020, vol. 157, pp. 1–17.

    Article  Google Scholar 

  5. Y. Wang, J. Zhang, Z. Liu, C. Du, J. Schenk, J. Shao, and Y. Zhang: J. Clean. Prod., 2019, vol. 234, pp. 157–70.

    Article  CAS  Google Scholar 

  6. M.A. Keane: J. Chem. Technol. Biotechnol., 2007, vol. 82, pp. 787–95.

    Article  CAS  Google Scholar 

  7. J. Cheng, J. Zhou, J. Liu, X. Cao, and K. Cen: Energy Fuels, 2009, vol. 23, pp. 2506–16.

    Article  CAS  Google Scholar 

  8. X. Tao, G. Zhang, P. Zhang, S. Wang, M. Nabi, and H. Wang: Ind. Crops Prod., 2018, vol. 120, pp. 77–83.

    Article  CAS  Google Scholar 

  9. J. Yu, L. Sun, C. Ma, Y. Qiao, and H. Yao: Waste Manag., 2016, vol. 48, pp. 300–14.

    Article  CAS  Google Scholar 

  10. J. Zhang, Z. Wang, T. Li, Z. Wang, S. Zhang, M. Zhong, Y. Liu, and X. Gong: Waste Manag., 2019, vol. 84, pp. 64–73.

    Article  CAS  Google Scholar 

  11. N. Wang, M. Mao, G. Mao, J. Yin, R. He, H. Zhou, N. Li, Q. Liu, and K. Zhi: Chemosphere, 2021, vol. 264, pp. 1–13.

    Google Scholar 

  12. A. Arulrajah, A. Mohammadinia, I. Phummiphan, S. Horpibulsuk, and W. Samingthong: Constr. Build. Mater., 2016, vol. 114, pp. 864–73.

    Article  CAS  Google Scholar 

  13. Y. Zhao, J. Zhan, G. Liu, M. Zheng, R. Jin, L. Yang, L. Hao, X. Wu, X. Zhang, and P. Wang: J. Hazard. Mater., 2017, vol. 330, pp. 135–41.

    Article  CAS  Google Scholar 

  14. Y. Li, M. Su, X. Xie, S. Wu, and C. Liu: Appl. Energy, 2015, vol. 145, pp. 60–68.

    Article  CAS  Google Scholar 

  15. R. Sun, Y. Li, J. Zhao, C. Liu, and C. Lu: Int. J. Hydr. Energy, 2013, vol. 38, pp. 13655–63.

    Article  CAS  Google Scholar 

  16. G. Li, Q. Liu, Z. Liu, Z.C. Zhang, C. Li, and W. Wu: Angew. Chem. Int. Ed., 2010, vol. 49, pp. 8480–83.

    Article  CAS  Google Scholar 

  17. F.N. Ridha, V. Manovic, A. Macchi, and E.J. Anthony: Appl. Energy, 2012, vol. 92, pp. 415–20.

    Article  CAS  Google Scholar 

  18. E. Serris, L. Favergeon, M. Pijolat, M. Soustelle, P. Nortier, R.S. Gärtner, T. Chopin, and Z. Habib: Cem. Concr. Res., 2011, vol. 41, pp. 1078–84.

    Article  CAS  Google Scholar 

  19. Q. Kang, J. Zhang, Z. Liu, D. Liu, Y. Zhang, and J. Yan: China Metall., 2017, vol. 27, pp. 9–12.

    Google Scholar 

  20. G. Feng, S. Wu, H. Han, L. Ma, W. Jiang, and X. Liu: Int. J. Miner. Metall. Mater., 2011, vol. 18, pp. 270–76.

    Article  CAS  Google Scholar 

  21. Y. Xie: Sinter. Pelletizing, 1986, vol. 05, pp. 58–64.

    Google Scholar 

  22. R. Wu, M. Wang, and B. Chen: Xinj. Iron Steel, 2016, vol. 138, pp. 20–22.

    Google Scholar 

  23. J. Zang: Xinj. Iron Steel, 2017, vol. 144, pp. 36–42.

    Article  Google Scholar 

  24. J. Zang, Q. Zhang, and M. Wang: Xinj. Iron Steel, 2016, vol. 01, p. 54.

    Google Scholar 

  25. C. Kamijo, M. Hara, Y. Yamaguchi, M. Yoshikawa, J. Kano, M. Matsumura, and T. Kawaguchi: ISIJ Int., 2013, vol. 53, pp. 1497–1502.

    Article  CAS  Google Scholar 

  26. C. Yang, D. Zhu, J. Pan, and Y. Shi: Int. J. Miner. Metall. Mater., 2019, vol. 26, pp. 953–62.

    Article  CAS  Google Scholar 

  27. M. Jan, S. Ryszard, and F. Przemyslaw: J. Iron Steel Res. Int., 2009, vol. 16, pp. 205–09.

    Google Scholar 

  28. S. Nistala, M. Sinha, M. Choudhary, G. Bose, and S. Sinha: Ironmak. Steelmak., 2015, vol. 42, pp. 226–32.

    Article  Google Scholar 

  29. S. Wu, J. Zhu, J. Fan, G. Zhang, and S. Chen: ISIJ Int., 2013, vol. 53, pp. 1561–70.

    Article  CAS  Google Scholar 

  30. A. Bawiec and K. Pawęska: Water Sci. Technol., 2020, vol. 81, pp. 1863–69.

    Article  CAS  Google Scholar 

  31. D. Guan, Y. Xu, J. Shi, J. Ma, and Z. Xue: J. Shenyang Inst. Eng., 2013, vol. 9, pp. 39–42.

    Google Scholar 

  32. J. Zhang, Q. Cao, H. Liu, Z. Shang, X. Guo, Y. Li, J. Gu, D. Zhang, M. Jiang, and F. Zhan: IOP Conf. Ser., 2019, vol. 227, pp. 1–6.

    CAS  Google Scholar 

  33. S. Kumagai, I. Hasegawa, G. Grause, T. Kameda, and T. Yoshioka: J. Anal. Appl. Pyroly., 2015, vol. 113, pp. 584–90.

    Article  CAS  Google Scholar 

  34. J. Zheng, J. Huang, L. Tao, Z. Li, and Q. Wang: Curr. Comput.-Aided Drug Des., 2020, vol. 10, p. 849.

    Google Scholar 

  35. Y. Luo, T. Yang, J. Zhou, T. Chun, Y. Pei, and L. Hong: Iron & Steel, 2021, vol. 56, pp. 47–54.

    Google Scholar 

  36. H. Zhou, X. Fan, X. Li, and M. Gan: J. Northeast. Univ. Nat. Sci., 2021, vol. 42, pp. 260–66.

    Google Scholar 

  37. Z. Mirghiasi, F. Bakhtiari, E. Darezereshki, and E. Esmaeilzadeh: J. Ind. Eng. Chem., 2014, vol. 20, pp. 113–17.

    Article  CAS  Google Scholar 

  38. X. Chen, X. Shi, and T. Lan: Contr. Eng. Pract., 2021, vol. 110, pp. 1–9.

    Google Scholar 

  39. YB/T 5166-1993, Beijing Standards Press of China, 1993.

  40. F. Abdul, S. Pintowantoro, and A. Maulidani: 4th Int. Conf. Mech. Eng., 2020, pp. 25–31.

  41. G. Wang, J. Kang, J. Zhang, Y. Wang, Z. Wang, Z. Liu, and C. Xu: Int. J. Miner. Metall. Mater., 2021, vol. 28, pp. 621–28.

    Article  CAS  Google Scholar 

  42. GB/T 13241-91, Beijing Standards Press of China, 1991.

  43. H. Chen, Z. Zheng, Z. Chen, and X.T. Bi: Powder Technol., 2017, vol. 316, pp. 410–20.

    Article  CAS  Google Scholar 

  44. K. He, Z. Zheng, Z. Chen, H. Chen, and W. Hao: Int. J. Hydr. Energy, 2021, vol. 46, pp. 4592–4605.

    Article  CAS  Google Scholar 

  45. D. Fernández-González, I. Ruiz-Bustinza, J. Mochón, C. González-Gasca, and L.F. Verdeja: Miner. Process. Extr. Metall. Rev., 2017, vol. 38, pp. 215–27.

    Article  Google Scholar 

  46. N.A.S. Webster, M.I. Pownceby, I.C. Madsen, and J.A. Kimpton: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1344–57.

    Article  Google Scholar 

  47. H. Wang, W. Zhao, C. Man, R. Wang, Z. Liu, and X. Xue: J. Cent. South Univ., 2017, vol. 24, pp. 39–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Central Universities Foundation of China (06500170), National Natural Science Foundation of China (52174291) and Guangdong Basic & Applied Basic Research Fund Joint Regional Funds–Youth Foundation Projects (2020A1515111008).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengjian Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zhang, J., Liu, Z. et al. Compound Use of Chemical Waste as Flux in Iron Ore Sintering. Metall Mater Trans B 53, 2143–2152 (2022). https://doi.org/10.1007/s11663-022-02514-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02514-5

Navigation