Skip to main content
Log in

Some basic properties of granules from ore blends consisting of ultrafine magnetite and hematite ores

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Some basic properties of granules, including the granule size distribution, packed-bed permeability, and chemical composition of the adhering layer, were investigated in this study for four iron ore blends consisting of 5wt%, 25wt%, and 45wt% ultrafine magnetite and 25wt% ultrafine hematite concentrates. The effects of varying the sinter basicity (CaO/SiO2 mass ratio = 1.4 to 2.2) and adding ultrafine concentrates on the variation of the adhering-layer composition and granule microstructure were studied. Moreover, the effect of adhering-layer compositional changes on sintering reactions was discussed in combination with pot sintering results of ore blends. Increasing sinter basicity led to an increase in the basicities of both the adhering layer and the fine part of the sinter mix, which were higher than the overall sinter basicity. When the sinter chemistry was fixed and fine Si-bearing materials (e.g., quartz sand) were used, increasing the amount of ultrafine ores in the ore blends tended to reduce the adhering-layer basicity and increase the SiO2 content in both the adhering layer and the fine part of the sinter mix, which will induce the formation of low-strength bonding phases and the deterioration of sinter strength. The adhering-layer composition in granules can be estimated in advance from the compositions of the −1 mm fractions of the raw materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Roller, Granulation of iron ores, BHP Tech. Bull., 26(1982), p. 44.

    Google Scholar 

  2. E. Kasai, W.J. Rankin, and J.F. Gannon, The effect of raw mixture properties on bed permeability during sintering, ISIJ Int., 29(1989), No. 1, p. 33.

    Article  Google Scholar 

  3. A. Formoso, A. Moro, G. Fernández Pello, J.L. Menéndez, M. Muñiz, and A. Cores, Influence of nature and particle size distribution on granulation of iron ore mixtures used in a sinter strand, Ironmaking Steelmaking, 30(2003), No. 6, p. 447.

    Article  Google Scholar 

  4. J.W. Jeon, S.W. Kim, I.K. Suh, and S.M. Jung, Assimilation behavior of quasi-particle comprising high alumina pisolitic ore, ISIJ Int., 54(2014), No. 12, p. 2713.

    Article  Google Scholar 

  5. T. Haga, A. Ohshio, K. Nakamura, T. Kozono, and K. Uekawa, Control technique of the melting reaction in sintering process by the fine part selective granulation of clayish iron ores, Tetsu-to-Hagané, 83(1997), No. 2, p. 103.

    Article  Google Scholar 

  6. S.L. Wu, J. Zhu, J.C. Bei, G.L. Zhang, and X.B. Zhai, Effects of particle characteristics on the granulation ability of iron ores during the sintering process, Int. J. Miner. Metall. Mater, 22(2015), No. 9, p. 907.

    Article  Google Scholar 

  7. F. Zhang, D.Q. Zhu, J. Pan, Y.P. Mo, and Z.Q Guo, Improving the sintering performance of blends containing Canadian specularite concentrate by modifying the binding medium, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 598.

    Article  Google Scholar 

  8. A. Sakai, H. Noda, H. Sato, M. Shiobara, K.Hashimoto, and K. Yamashita, Technological improvements to attain high productivity at Fukuyama No. 5 sintering machine (HPS), [in] NKK Technical Report, Japanese edition, 2001, p. 34.

  9. T. Jiang, G.H. Li, H.T. Wang, K.C. Zhang, and Y.B. Zhang, Composite agglomeration process (CAP) for preparing blast furnace burden, Ironmaking Steelmaking, 37(2010), No. 1, p. 1.

    Article  Google Scholar 

  10. J. Pan, B.J. Shi, D.Q. Zhu, and Y.P. Mo, Improving sintering performance of specularite concentrates by pre-briquetting process, ISIJ Int., 56(2016), No. 5, p. 777.

    Article  Google Scholar 

  11. S. Wu, T. Sugiyama, K. Morioka, E. Kasai, and Y. Omori, Elimination reaction of NO gas generated from coke combustion in iron ore sinter bed, Tetsu-to-Hagané, 80(1994), No. 4, p. 276.

    Article  Google Scholar 

  12. K. Katayama and S.J. Kasama, Influence of lime coating coke on NOx concentration in sintering process, ISIJ Int., 56(2016), No. 9, p. 1563.

    Article  Google Scholar 

  13. M. Gan, X.H. Fan, W. Lü, X.L. Chen, Z.Y. Ji, T. Jiang, Z.Y. Yu, and Y. Zhou, Fuel pre-granulation for reducing NOx emission from the iron ore sintering process, Powder Technol., 301(2016), p. 478.

    Article  Google Scholar 

  14. H. Zhou, Z.H. Liu, M. Cheng, M.X. Zhou, and R.P. Liu, Influence of coke combustion on NOx emission during iron ore sintering, Energy Fuels, 29(2015), No. 2, p. 974.

    Article  Google Scholar 

  15. C.E. Loo and W. Leung, Factors influencing the bonding phase structure of iron ore sinters, ISIJ Int., 43(2003), No. 9, p. 1393.

    Article  Google Scholar 

  16. L.M. Lu and R.J. Holmes, Effects of alumina on sintering performance of hematite iron ores, ISIJ Int., 47(2007), No. 3, p. 349.

    Article  Google Scholar 

  17. J. Okazaki and K. Higuchi, Marra Mamba ore, its mineralogical properties and evaluation for utilization, ISIJ Int., 45(2005), No. 4, p. 427.

    Article  Google Scholar 

  18. H.L. Han and L.M. Lu, Recent advances in sintering with high proportions of magnetite concentrates, Miner. Process. Extr. Metall. Rev, 39(2018), No. 4, p. 217.

    Article  Google Scholar 

  19. C.C. Yang, D.Q. Zhu, B.J. Shi, J. Pan, L.M. Lu, X.B. Li, and Y.P. Mo, Comparison of sintering performance of typical specular hematite ores with distinct size distributions, J. Iron Steel Res. Int., 24(2017), No. 10, p. 1007.

    Article  Google Scholar 

  20. L.X. Yang, Sintering fundamentals of magnetite alone and blended with hematite/goethite ores, ISIJ Int., 45(2005), No. 4, p. 469.

    Article  Google Scholar 

  21. J.W. Jeon, S.W. Kim, and S.M. Jung, Utilization of magnetite concentrate as an additive in adhering fines of quasi-particle and its effect on assimilation behavior, ISIJ Int., 55(2015), No. 3, p. 513.

    Article  Google Scholar 

  22. C.C. Yang, D.Q. Zhu, J. Pan, and L.M. Lu, Granulation effectiveness of iron ore sinter feeds: Effect of ore properties, ISIJ Int., 58(2018), No. 8, p. 1427.

    Article  Google Scholar 

  23. L.M. Lu, Important iron ore characteristics and their impacts on sinter quality—a review, Miner. Metall. Process., 32(2015), No. 2, p. 88.

    Google Scholar 

  24. M.I. Pownceby and J.M.F. Clout, Phase relations in the Fe-rich part of the system Fe2O3 (-Fe3O4)-CaO-SiO2 at 1240–1300°C and oxygen partial pressure of 5×10−3 atm: implications of iron ore sinter, Miner. Process. Extr. Metall., 109(2000), No. 1, p. 36.

    Article  Google Scholar 

  25. N.A.S. Webster, M.I. Pownceby, I.C. Madsen, A.J. Studer, J.R. Manuel, and J.A. Kimpton, Fundamentals of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phase formation: effects of CaO:SiO2 ratio, Metall. Mater. Trans. B, 45(2014), No. 6, p. 2097.

    Article  Google Scholar 

  26. W.J. Rankin, P.W. Roller, and R.J. Batterham, Analysis of the permeability of granulated iron ore sinter feeds using the Ergun equation, Miner. Metall. Process., 2(1985), No. 1, p. 53.

    Google Scholar 

  27. J. Hinkley, A.G. Waters, and J.D. Litster, An investigation of pre-ignition air flow in ferrous sintering, Int. J. Miner. Process., 41(1994), No. 1–2, p. 37.

    Article  Google Scholar 

  28. B.G. Ellis, C.E. Loo, and D. Witchard, Effect of ore properties on sinter bed permeability and strength, Ironmaking Steelmaking, 34(2007), No. 2, p. 99.

    Article  Google Scholar 

  29. M.I. Pownceby and J.M.F. Clout, Importance of fine ore chemical composition and high temperature phase relations: applications to iron ore sintering and pelletising, Miner. Process. Extr. Metall., 112(2003), No. 1, p. 44.

    Article  Google Scholar 

  30. E. Kasai, S.L. Wu, and Y. Omori, Factors governing the strength of agglomerated granules after sintering, ISIJ Int., 31(1991), No. 1, p. 17.

    Article  Google Scholar 

  31. J.M.F. Clout and J.R. Manuel, Fundamental investigations of difference in bonding mechanisms in iron ore sinter formed from magnetite concentrates and hematite ores, Powder Technol., 130(2003), No. 1–3, p. 393.

    Article  Google Scholar 

  32. G.L. Zhang, S.L. Wu, B. Su, Z.G. Que, C.G. Hou, and Y. Jiang, Influencing factor of sinter body strength and its effects on iron ore sintering indexes, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 553.

    Article  Google Scholar 

  33. X.R. Tang, Theory and Technology of Iron Ore Sintering, Central South University Press, Changsha, 1992, p. 186.

    Google Scholar 

  34. Z.W. Ying, M.F. Jiang, and L.X. Xu, Effects of mineral composition and microstructure on crack resistance of sintered ore, J. Iron Steel Res. Int., 13(2006), No. 4, p. 9.

    Article  Google Scholar 

  35. Q. Wei, X.M. Mao, and H.B. Shen, Study on properties of sinter mineral phases, Baosteel Tech. Res., 12(2018), No. 3, p. 16.

    Google Scholar 

  36. I. Shigaki, M. Sawada, O. Tsuchiya, K. Yoshioka, and T. Takahashi, Study of primary melt formation and transition mechanism to final slag of sintered ore, Tetsu-to-Hagané, 70(1984), No. 16, p. 2208.

    Article  Google Scholar 

  37. F. Matsuno, Changes of mineral phases during the sintering of Fe2O3-CaO-SiO2 system, Tetsu-to-Hagané, 64(1978), No. 10, p. 1499.

    Article  Google Scholar 

  38. F. Matsuno and T. Harada, Changes of mineral phases during the sintering of iron ore-lime stone systems, Trans. ISIJ, 21(1981), No. 5, p. 318.

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Torch Program of China (No. 2011GH561685) and Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources are sincerely acknowledged. C. Yang is thankful to China Scholarship Council (CSC) for financially supporting his PhD study in CSIRO Mineral Resources, Kenmore in Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-qing Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Cc., Zhu, Dq., Pan, J. et al. Some basic properties of granules from ore blends consisting of ultrafine magnetite and hematite ores. Int J Miner Metall Mater 26, 953–962 (2019). https://doi.org/10.1007/s12613-019-1824-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1824-7

Keywords

Navigation