Skip to main content

Advertisement

Log in

Varied Modification Mechanisms of Sr and Sb Under Diverse Cooling Rates on Primary Mg2Si in an Al-20Mg2Si Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Unraveling the varied modification mechanisms of trace elements under diverse cooling rates is of great importance to regulate the morphology of primary Mg2Si in hypereutectic Al-Mg2Si alloys. In the present work, the modification mechanisms of Sr and Sb in Al-20Mg2Si alloys under different cooling rates are discussed in detail. Increasing the cooling rates from ~ 50 to 76 °C/s to ~ 213 to 230 °C/s leads to the morphology transition of primary Mg2Si from hoppers to dendrites, which is attributed to a smaller constitutional zone with the increase of temperature gradients introduced by high cooling rates. The addition of 0.15 wt pct Sr modifies the morphology of primary Mg2Si phase to cubes at cooling rates of ~ 50 to 76 °C/s and ~ 213 to 230 °C/s with the same modification mechanism, i.e., by increasing nucleation driving force for primary Mg2Si and the adsorption-poisoning effect. In contrast, the modification mechanisms of Sb are different under varying cooling rates. At low cooling rates of ~ 50 to 76 °C/s, Sb modifies the morphology of primary Mg2Si to be truncated octahedrons by introducing Mg3Sb2 particles as heterogeneous nuclei and the substitution of Sb to Si in Mg2Si crystals. At high cooling rates of ~ 213 to 230 °C/s, primary Mg2Si grows coarser with a dendrite morphology due to solute trapping, which changes the modification mechanism to substitution alone. Moreover, it is interesting that at cooling rates of ~ 213 to 230 °C/s, primary and eutectic Mg2Si particles in the Al-20Mg2Si-0.15Sr alloy are refined simultaneously, which greatly suppresses the crack formation and propagation. Accordingly, the ultimate tensile strength and elongation to failure are increased to ~ 242 MPa and ~ 5.6 pct compared to the unmodified alloy (~ 188 MPa and ~ 1.4 pct, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Hadian, M. Emamy, and J. Campbell: Metall. Mater. Trans. B, 2009, vol. 40, pp. 822–32.

    Article  Google Scholar 

  2. R. Khorshidi, A. Honarbakhsh-Raouf, and R. Mahmudi: J. Alloys Compd., 2017, vol. 700, pp. 18–28.

    Article  CAS  Google Scholar 

  3. R. Khorshidi, A. Honarbakhsh-Raouf, and R. Mahmudi: Mater. Sci. Eng. A, 2018, vol. 718, pp. 9–18.

    Article  CAS  Google Scholar 

  4. C. Li, J. Sun, Z. Li, Z. Gao, Y. Liu, L. Yu, and H. Li: Mater. Charact., 2016, vol. 122, pp. 142–47.

    Article  CAS  Google Scholar 

  5. E. Karakose, M. Yildiz, and M. Keskin: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2468–78.

    Article  CAS  Google Scholar 

  6. C.-J. Song, Z.-M. Xu, and J.-G. Li: Metall. Mater. Trans. B, 2006, vol. 37, pp. 1007–14.

    Article  Google Scholar 

  7. Z. Li, C. Li, Z. Gao, Y. Liu, X. Liu, Q. Guo, L. Yu, and H. Li: Mater. Charact., 2015, vol. 110, pp. 170–74.

    Article  CAS  Google Scholar 

  8. N.A. Nordin, S. Farahany, A. Ourdjini, T.A.A. Bakar, and E. Hamzah: Mater. Charact., 2013, vol. 86, pp. 97–107.

    Article  CAS  Google Scholar 

  9. M. Li, Y. Sun, C. Li, J. Dong, L. Yu, and Y. Liu: Mater. Charact., 2020, vol. 169, p. 110611

    Article  CAS  Google Scholar 

  10. Q.D. Qin, Y.G. Zhao, C. Liu, P.J. Cong, and W. Zhou: J. Alloys Compd., 2008, vol. 454, pp. 142–46.

    Article  CAS  Google Scholar 

  11. C. Li, C. Wang, H. Ju, X.-N. Xue, M. Zha, and H.-Y. Wang: Materialia, 2020, vol. 14, p. 100875.

    Article  CAS  Google Scholar 

  12. L. Chen, H.-Y. Wang, Y.-J. Li, M. Zha, and Q.-C. Jiang: CrystEngComm, 2014, vol. 16, pp. 448–54.

    Article  CAS  Google Scholar 

  13. Y. Wang and X.F. Guo: Mater. Chem. Phys., 2019, vol. 223, pp. 336–42.

    Article  CAS  Google Scholar 

  14. R. Alizadeh and R. Mahmudi: J. Alloys. Compd., 2011, vol. 509, pp. 9195–99.

    Article  CAS  Google Scholar 

  15. M. Tebib, A.M. Samuel, F. Ajersch, and X.G. Chen: Mater. Charact., 2014, vol. 89, pp. 112–23.

    Article  CAS  Google Scholar 

  16. H. Ghandvar, M.H. Idris, and N. Ahmad: J. Alloys. Compd., 2018, vol. 751, pp. 370–90.

    Article  CAS  Google Scholar 

  17. C. Li, X. Liu, and G. Zhang: Mater. Sci. Eng. A, 2008, vol. 497, pp. 432–37.

    Article  Google Scholar 

  18. H. Yang, Y. Zhang, J. Wang, Z. Liu, C. Liu, and S. Ji: J. Mater. Sci. Tech., 2021, vol. 91, pp. 215–23.

    Article  CAS  Google Scholar 

  19. M.A. Easton and D.H. StJohn: Mater. Sci. Eng. A, 2008, vol. 486, pp. 8–13.

    Article  Google Scholar 

  20. H.C. Yu, H.Y. Wang, L. Chen, M. Zha, C. Wang, C. Li, and Q.C. Jiang: Mater. Sci. Eng. A, 2017, vol. 685, pp. 31–8.

    Article  CAS  Google Scholar 

  21. Q.D. Qin and Y.G. Zhao: J. Alloys. Compd., 2008, vol. 462, pp. L28–L31.

    Article  CAS  Google Scholar 

  22. Y. Liu, L. Luo, C. Han, L. Ou, J. Wang, and C. Liu: J. Mater. Sci. Tech., 2016, vol. 32, pp. 305–12.

    Article  CAS  Google Scholar 

  23. L. Yu, Q. Hu, Z. Ding, F. Yang, W. Lu, N. Zhang, S. Cao, and J. Li: J. Mater. Sci. Tech., 2021, vol. 69, pp. 60–8.

    Article  CAS  Google Scholar 

  24. E. Karaköse and H. Çolak: Mater. Charact., 2016, vol. 121, pp. 68–75.

    Article  Google Scholar 

  25. M. Sun, D.H. StJohn, M.A. Easton, K. Wang, and J. Ni: Metall. Mater. Trans. A, 2020, vol. 51, pp. 482–96.

    Article  CAS  Google Scholar 

  26. Y.W. Jia, H.J. Huang, Y.N. Fu, G.L. Zhu, D. Shu, B. Sun, and D.H. StJohn: Scripta. Mater., 2019, vol. 167, pp. 6–10.

    Article  CAS  Google Scholar 

  27. G.F. Liang, Y. Ali, G.Q. You, and M.X. Zhang: Materialia, 2018, vol. 3, pp. 113–21.

    Article  CAS  Google Scholar 

  28. G.L. Mao, H. Yan, C.C. Zhu, Z. Wu, and W.L. Gao: J. Alloys. Compd., 2019, vol. 806, pp. 909–16.

    Article  CAS  Google Scholar 

  29. L.F. Li, D.Q. Li, F. Mao, J. Feng, Y.Z. Zhang, and Y.L. Kang: J. Alloys Compd., 2020, vol. 826, p. 154206.

    Article  CAS  Google Scholar 

  30. L. Chen, H.-Y. Wang, D. Luo, H.-Y. Zhang, B. Liu, and Q.-C. Jiang: CrystEngComm, 2013, vol. 15, pp. 1787–93.

    Article  CAS  Google Scholar 

  31. W. Jiang, X. Xu, Y. Zhao, Z. Wang, C. Wu, D. Pan, and Z. Meng: Mater. Sci. Eng. A, 2018, vol. 721, pp. 263–73.

    Article  CAS  Google Scholar 

  32. H.Y. Wang, H.C. Yu, C. Li, M. Zha, C. Wang, and Q.C. Jiang: CrystEngComm, 2017, vol. 19, pp. 1680–88.

    Article  CAS  Google Scholar 

  33. C. Li, C. Wang, P.K. Ma, J. Xu, Z.Z. Yang, M. Zha, J.G. Wang, and H.Y. Wang: Mater. Sci. Eng. A, 2020, vol. 782, p. 139247.

    Article  CAS  Google Scholar 

  34. G. Xu, K. Wang, X. Lv, H. Li, H. Jiang, Q. Wang, and W. Ding: Mater. Charact., 2021, vol. 178, p. 111240.

    Article  CAS  Google Scholar 

  35. H.C. Liao, M. Zhang, Q.C. Wu, H.P. Wang, and G.X. Sun: Scr. Mater., 2007, vol. 57, pp. 1121–24.

    Article  CAS  Google Scholar 

  36. Y. Ali, G.Q. You, F.S. Pan, and M.X. Zhang: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 474–81.

    Article  Google Scholar 

  37. D.H. StJohn, M. Qian, M.A. Easton, and P. Cao: Acta Mater., 2011, vol. 59, pp. 4907–21.

    Article  CAS  Google Scholar 

  38. J. Hutt and D. Stjohn: Int. J. Cast Metal. Res., 1998, vol. 11, pp. 13–22.

    Article  CAS  Google Scholar 

  39. M. Qian and A. Das: Scr. Mater., 2006, vol. 54, pp. 881–86.

    Article  CAS  Google Scholar 

  40. M. Qian, P. Cao, M.A. Easton, S.D. McDonald, and D.H. StJohn: Acta Mater., 2010, vol. 58, pp. 3262–70.

    Article  CAS  Google Scholar 

  41. D.H. StJohn, A. Prasad, M.A. Easton, and M. Qian: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 4868–85.

    Article  Google Scholar 

  42. Y. Xu, D. Casari, R.H. Mathiesen, and Y. Li: Acta Mater., 2018, vol. 149, pp. 312–25.

    Article  CAS  Google Scholar 

  43. Z.C. Luo, B.B. He, Y.Z. Li, and M.X. Huang: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1981–89.

    Article  Google Scholar 

  44. H.Y. Wang, Q. Li, B. Liu, N. Zhang, L. Chen, J.G. Wang, and Q.C. Jiang: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4926–32.

    Article  Google Scholar 

  45. H.Y. Wang, X.N. Xue, X.Y. Xu, C. Wang, L. Chen, and Q.C. Jiang: CrystEngComm, 2016, vol. 18, pp. 8599–8607.

    Article  CAS  Google Scholar 

  46. H.Y. Wang, F. Liu, L. Chen, M. Zha, G.J. Liu, and Q.C. Jiang: Mater. Sci. Eng. A, 2016, vol. 657, pp. 331–38.

    Article  CAS  Google Scholar 

  47. E.J. Martinez, M.A. Cisneros, S. Valtierra, and J. Lacaze: Scr. Mater., 2005, vol. 52, pp. 439–43.

    Article  Google Scholar 

  48. J.A. Dantzig and M. Rappaz: Solidification, 5th ed. EPFL Press, London, 2009.

    Book  Google Scholar 

  49. Y. Li, B. Ban, J. Li, T. Zhang, X. Bai, J. Chen, and S. Dai: Metall. Mater. Trans. B, 2015, vol. 46, pp. 542–44.

    Article  CAS  Google Scholar 

  50. C. Li, Z. Fan, H.-L. Jia, C. Wang, P.-K. Ma, M.-W. Ren, and H.-Y. Wang: J. Alloys Compd., 2021, vol. 888, p.161477.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from The National Natural Science Foundation of China (Nos. 51790483, 51625402, and 51801069) are greatly acknowledged. Partial financial support came from The Science and Technology Development Program of Jilin Province (Nos. 20200401025GX, 20200201002JC and 20200201193JC), The Central Universities, JLU, Program for JLU Science and Technology Innovative Research Team (JLUSTIRT, 2017TD-09).

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Long Jia or Hui-Yuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 318 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhao, MC., Jia, HL. et al. Varied Modification Mechanisms of Sr and Sb Under Diverse Cooling Rates on Primary Mg2Si in an Al-20Mg2Si Alloy. Metall Mater Trans B 53, 2066–2076 (2022). https://doi.org/10.1007/s11663-022-02506-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02506-5

Navigation